Gọi M là trung điểm của BC. Trong mặt phẳng (SAM), kẻ đường trung trực của đoạn thẳng SA , qua điểm M kẻ đường thẳng song song với SA , hai đường thẳng đó cắt nhau tại O .
Dễ dàng chứng minh được O là tâm mặt cầu ngoại tiếp chóp S.ABC .
Ta có OB=√OM2+MB2=√AI2+MB2=√(32)2+(52)2=√17√2.
Diện tích mặt cầu ngoại tiếp
S=4π(√17√2)2=34π(dvdt).
Cho hình chóp S.ABC có SA = 3, SA vuông góc với đáy. Tam giác ABC vuông tại A,
Xuất bản: 24/08/2020 - Cập nhật: 24/08/2020 - Tác giả: Chu Huyền
Câu Hỏi:
Cho hình chóp S.ABC có SA=3, SA vuông góc với đáy. Tam giác ABC vuông tại A, BC=5. Diện tích mặt cầu ngoại tiếp hình chóp là
Câu hỏi trong đề: Đề ôn luyện thi THPT Quốc gia môn Toán số 5 có đáp án
Đáp án và lời giải
đáp án đúng: D