Lời giải bài 9 trang 132 sgk Toán 8 tập 2 được chia sẻ với mục đích tham khảo cách làm và so sánh đáp án. Cùng với đó góp phần giúp bạn ôn tập lại các kiến thức Toán 8 phần hình học để tự tin hoàn thành tốt các bài tập nâng cao khác.
Đề bài 9 trang 132 SGK Toán 8 tập 2
Cho tam giác \(ABC\) có \(AB < AC\), \(D\) là một điểm nằm giữa \(A\) và \(C\). Chứng minh rằng : \(\widehat {ABD} = \widehat {ACB} \Leftrightarrow A{B^2} = AC.AD\)
» Bài tập trước: Bài 8 trang 132 SGK Toán 8 tập 2
Giải bài 9 trang 132 sgk Toán 8 tập 2
Hướng dẫn cách làm
Áp dụng tính chất của hai tam giác đồng dạng.
Bài giải chi tiết
Dưới đây là các cách giải bài 9 trang 132 SGK Toán 8 tập 2 để các bạn tham khảo và so sánh bài làm của mình:
a) Chứng minh \(\widehat {ABD} = \widehat {ACB} \Rightarrow A{B^2} = AC.AD\)
Xét \(∆ABD\) và \(∆ACB\) có:
\(\widehat A\) chung (gt)
\(\widehat {ABD} = \widehat {ACB}\) (gt)
\(\Rightarrow \) \(∆ABD ∽ ∆ACB\) (g.g)
\( \Rightarrow \dfrac{{AB}}{{AC}} = \dfrac{{AD}}{{AB}} \Rightarrow A{B^2} = AC.AD\)
b) Chứng minh \(A{B^2} = AC.AD \Rightarrow \widehat {ABD} = \widehat {ACB}\)
\(A{B^2} = AC.AD\Rightarrow \dfrac{{AB}}{{AC}} = \dfrac{{AD}}{{AB}}\)
Xét \(∆ABD\) và \(∆ACB\) có:
\(\widehat A\) chung
\(\dfrac{{AB}}{{AC}} = \dfrac{{AD}}{{AB}}\)
Suy ra \(∆ABD ∽ ∆ACB\) (c.g.c)
\(\Rightarrow \widehat {ABD} = \widehat {ACB}\) (Tính chất hai tam giác đồng dạng).
Vậy \(\widehat {ABD} = \widehat {ACB} \Leftrightarrow A{B^2} = AC.AD\)
» Bài tập tiếp theo: Bài 10 trang 132 SGK Toán 8 tập 2
Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 9 trang 132 sgk toán 8 tập 2. Mong rằng những bài hướng dẫn giải toán 8 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học này.