Trang 20 SGK Toán 7 tập 1 Chân trời sáng tạo

Xuất bản ngày 15/08/2022 - Tác giả:

Giải bài tập 1, 2, 3 trang 20 SGK Toán 7 tập 1 Chân trời sáng tạo chi tiết hướng dẫn và đáp án giúp các em học tốt hơn

Bài 1 trang 20 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

Viết các số sau dưới dạng luỹ thừa với số mũ lớn hơn 1:

\(0,49;\,\frac{1}{{32}};\,\frac{{ - 8}}{{125}};\,\frac{{16}}{{81}};\,\frac{{121}}{{169}}\)

Bài giải

\(\begin{array}{l}0,49 = {\left( {0,7} \right)^2};\\\,\frac{1}{{32}} =\frac{1^5}{2^5}={\left( {\frac{1}{2}} \right)^5};\\\,\frac{{ - 8}}{{125}} =\frac{(-2)^3}{5^3}= {\left( {\frac{{ - 2}}{5}} \right)^3};\end{array}\)

\(\frac{{16}}{{81}} =\frac{4^2}{9^2}= {\left( {\frac{4}{9}} \right)^2} (hoặc \,\frac{{16}}{{81}} =\frac{2^4}{3^4}= {\left( {\frac{2}{3}} \right)^4});\\\,\frac{{121}}{{169}} =\frac{11^2}{13^2}= {\left( {\frac{{11}}{{13}}} \right)^2}\)

Bài 2 trang 20 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

a)Tính: \({\left( {\frac{{ - 1}}{2}} \right)^5};{\left( {\frac{{ - 2}}{3}} \right)^4};{\left( { - 2\frac{1}{4}} \right)^3};{\left( { - 0,3} \right)^5};{\left( { - 25,7} \right)^0}\).

b)Tính: \({\left( { - \frac{1}{3}} \right)^2};{\left( { - \frac{1}{3}} \right)^3};{\left( { - \frac{1}{3}} \right)^4};{\left( { - \frac{1}{3}} \right)^5}\).

Hãy rút ra nhận xét về dấu của luỹ thừa với số mũ chẵn và luỹ thừa với số mũ lẻ của một số hữu tỉ âm.

Bài giải

a)

\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)

b)

\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)

Nhận xét:

+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.

+  Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.

Bài 3 trang 20 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

Tìm x, biết:

a)\(x:{\left( {\frac{{ - 1}}{2}} \right)^3} =  - \frac{1}{2};\)

b)\(x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9};\)

c)\({\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9};\)

d)\(x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\)

Bài giải

a)

\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} =  - \frac{1}{2}\\x =  - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)

Vậy \(x = \frac{1}{{16}}\).

b)

\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)

Vậy \(x = \frac{9}{{25}}\).

c)

\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)

Vậy \(x = \frac{4}{9}\).

d)

\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)

Vậy \(x = \frac{1}{{16}}\).

Bài tiếp theo: Trang 21 SGK Toán 7 tập 1 Chân trời sáng tạo

Xem thêm:

Trên đây là chi tiết hướng dẫn Giải bài tập Trang 20 SGK Toán 7 tập 1 Chân trời sáng tạo được Đọc Tài Liệu biên soạn với mong muốn hỗ trợ các em học sinh học tốt hơn môn Toán lớp 7

Hướng dẫn giải Toán 7 Chân trời sáng tạo bởi Đọc Tài Liệu

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

CÓ THỂ BẠN QUAN TÂM