Lý thuyết và cách giải một số phương trình chứa dấu giá trị tuyệt đối

Xuất bản: 08/11/2019

Tổng hợp lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung bao gồm các kiến thức cơ bản cùng các dạng bài tập thường gặp kèm phương pháp giải.

Nếu đang tìm kiếm một tài liệu học tập về phần phương trình, bất phương trình, các em hãy tham khảo ngay tài liệu dưới đây với hệ thống lý thuyết phương trình chứa dấu giá trị tuyệt đối cùng cách giải các dạng bài tập thường gặp, giúp các em nắm được trọn vẹn phần kiến thức này. Các thầy cô cũng có thể sử dụng bài tổng hợp này như một tài liệu hữu ích phục vụ quá trình dạy học của mình.

Cùng tham khảo nhé!

Lý thuyết và cách giải một số phương trình chứa dấu giá trị tuyệt đối

I. Lý thuyết phương trình chứa dấu giá trị tuyệt đối

Giá trị tuyệt đối của số \(a\), kí hiệu là \(|a|\)  được định nghĩa như sau:

\(\left| a \right| = \left\{ \begin{array}{l}a\;\;khi\;\;a \ge 0\\ - a\;\;khi\;\;a < 0\end{array} \right..\)

II. Một số dạng toán chứa dấu giá trị tuyệt đối

a. Để giải phương trình chứa dấu giá trị tuyệt đối (GTTĐ) dạng \(\left| {A\left( x \right)} \right| = B\left( x \right)\), ta khử dấu GTTĐ bằng cách xét 2 trường hợp :

- Trường hợp 1: \(\left\{ \begin{array}{l}A\left( x \right) \ge 0\\A\left( x \right) = B\left( x \right)\end{array} \right.\)

- Trường hợp 1: \(\left\{ \begin{array}{l}A\left( x \right) < 0\\ - A\left( x \right) = B\left( x \right)\end{array} \right.\)

b. Với phương trình dạng \(\left| {A\left( x \right)} \right| = m\)  với \(m > 0\), ta có:

\( \left| {A\left( x \right)} \right| = m \Leftrightarrow A\left( x \right) = m\)  hoặc \( A\left( x \right) =  - m\)

c. Với phương trình dạng \(\left| {A\left( x \right)} \right| = \left| {B\left( x \right)} \right|\) ta có:

\(\left| {A\left( x \right)} \right| = \left| {B\left( x \right)} \right| (\Leftrightarrow A\left( x \right) = B\left( x \right)\) hoặc \( A\left( x \right) =  - B\left( x \right)\)

d. Với phương trình chứa nhiều dấu giá trị tuyệt đối ta thực hiện theo các bước sau

Bước 1: Lập bảng xét dấu

Bước 2: Dựa vào bảng xét dấu để chia các trường hợp phá dấu giá trị tuyệt đối.

Bước 3: Giải phương trình thu được, so sánh với điều kiện và kết luận nghiệm.

Ví dụ:  \(\left| {2x - 4} \right| = x\)

+ TH1: \(\left| {2x - 4} \right| = 2x - 4\)  khi \(2x - 4 \ge 0 \Leftrightarrow 2x \ge 4 \Leftrightarrow x \ge 2\)

Khi đó ta có phương trình: \( 2x - 4 = x \Leftrightarrow x = 4\,\left( {TM} \right)\)

+ TH2: \(\left| {2x - 4} \right| =  - \left( {2x - 4} \right)\) khi \(2x - 4 < 0 \Leftrightarrow 2x < 4 \Leftrightarrow x < 2\)

Khi đó ta có phương trình

 \(- \left( {2x - 4} \right) = x \)\(\Leftrightarrow  - 2x + 4 - x = 0 \)\(\Leftrightarrow 3x = 4\)\( \Leftrightarrow x = \dfrac{4}{3}\left( {TM} \right)\)

Vậy tập nghiệm của phương trình \(S = \left\{ {\dfrac{4}{3};4} \right\}\)

***********************

Trên đây là lý thuyết phương trình chứa dấu giá trị tuyệt đối bao gồm các kiến thức cần nắm và những dạng bài liên quan. Hy vọng đây sẽ là tài liệu hữu ích phục vụ việc học tập của các em. Ngoài ra, các em hãy truy cập doctailieu.com để tham khảo thêm nhiều tài liệu học Toán lớp 8 phong phú khác mà chúng tôi đã sưu tầm và tổng hợp nhé. Chúc các em luôn học tốt và đạt kết quả cao!

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

CÓ THỂ BẠN QUAN TÂM