Bài 17 trang 49 SGK Toán 9 tập 2

Xuất bản: 11/11/2019 - Cập nhật: 25/11/2019 - Tác giả: Giangdh

Bài 17 trang 49 SGK Toán 9 tập 2 được giải bởi ĐọcTàiLiệu giúp bạn nắm được cách làm và tham khảo đáp án bài 17 trang 49 sách giáo khoa Toán lớp 9 tập 2.

Đáp án bài 17 trang 49 SGK Toán 9 tập 2 được biên soạn bởi Đọc Tài Liệu nhằm mục đích tham khảo phương pháp làm bài. Tài liệu cũng giúp các bạn ôn tập nội dung kiến thức trong Toán 9 chương 4 phần đại số về công thức nghiệm thu gọn.

Đề bài 17 trang 49 SGK Toán 9 tập 2

Xác định \(a, b', c\) rồi dùng công thức nghiệm thu gọn giải các phương trình:

a) \(4{x^2} + 4x + 1 = 0\);                       

b) \(13852{x^2} - 14x + 1 = 0\);

c) \(5{x^2} - 6x + 1 = 0\);                         

d) \( - 3{x^2} + 4\sqrt 6 x + 4 = 0\).

» Bài tập trước: Bài 16 trang 45 SGK Toán 9 tập 2

Giải bài 17 trang 49 SGK Toán 9 tập 2

Hướng dẫn cách làm

Xét phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =(b')^2-ac.\)

+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)

+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.

+) Nếu \(\Delta' =0\) thì phương trình có hai nghiệm kép: \(x_1=x_2=\dfrac{-b'}{a}\).

Đáp án chi tiết

Dưới đây là các cách giải bài 17 trang 49 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

a) \(4{x^2} + 4x + 1 = 0\)

Ta có: \(a = 4,\ b' = 2,\ c = 1\)

Suy ra \(\Delta'  = {2^2} - 4.1 = 0\)

Do đó phương trình có nghiệm kép:

\({x_1} = {x_2} = \dfrac{ - 2}{4} =  - \dfrac{1 }{ 2}\).

b) \(13852{x^2} - 14x + 1 = 0\)

Ta có: \(a = 13852,\ b' =  - 7,\ c = 1\)

Suy ra \(\Delta'  = {( - 7)^2} - 13852.1 =  - 13803 < 0\) 

Do đó phương trình vô nghiệm.

c) \(5{x^2} - 6x + 1 = 0\)

Ta có: \(a = 5,\ b' =  - 3,\ c = 1\)

Suy ra \(\Delta ' = {( - 3)^2} - 5.1 = 4 > 0\).

Do đó phương trình có hai nghiệm phân biệt:

\({x_1} = \dfrac{3 + \sqrt 4}{5}=\dfrac{5}{5} = 1\)

\({x_2} = \dfrac{3 - \sqrt 4}{5}=\dfrac{1}{5}.\)

d) \( - 3{x^2} + 4\sqrt 6 x + 4 = 0\)

Ta có: \(a =  - 3,\ b' = 2\sqrt 6 ,\ c = 4\)

Suy ra \(\Delta ' = {(2\sqrt 6 )^2} - ( - 3).4 = 36 > 0\)

Do đó phương trình có hai nghiệm phân biệt:

\({x_1} = \dfrac{ - 2\sqrt 6  + 6}{ - 3} = \dfrac{2\sqrt 6  - 6}{3}\)

\({x_2} = \dfrac{ - 2\sqrt 6  - 6}{ - 3} = \dfrac{2\sqrt {6 }+6 }{3}\)

» Bài tiếp theo: Bài 18 trang 49 SGK Toán 9 tập 2

Trên đây là hướng dẫn cách làm và đáp án bài 17 trang 49 Toán đại số 9 tập 2. Các em cũng có thể tham khảo thêm các bài tập tại chuyên mục giải Toán 9 của doctailieu.com.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM