Bạn đang tìm kiếm tài liệu tổng hợp kiến thức về công thức nghiệm thu gọn? Hãy tham khảo ngay bài viết dưới đây của Đọc tài liệu với những lý thuyết công thức nghiệm thu gọn cùng tổng hợp các dạng toán cơ bản thường gặp. Đây sẽ là tài liệu học tập hữu ích cho học sinh và đồng thời giúp các thầy cô có thêm tài liệu hay phục vụ việc dạy học.
Cùng tham khảo nhé!
I. Lý thuyết công thức nghiệm thu gọn
1. Nhắc lại công thức nghiệm của phương trình bậc hai
Xét phương trình bậc hai \(a{x^2} + bx + c = 0 {\rm{ }} (a \ne 0)\)
và biệt thức \(\Delta = {b^2} - 4ac.\)
Trường hợp 1. Nếu \(\Delta < 0\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta = 0 \)thì phương trình có nghiệm kép: \({x_1} = {x_2} = - \dfrac{b}{{2a}}\)
Trường hợp 3. Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1}} = \dfrac{{-b + \sqrt {\Delta } }}{2a}, {x_{2}} = \dfrac{{-b - \sqrt {\Delta } }}{2a}\)
2. Công thức nghiệm thu gọn của phương trình bậc hai
Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {b^{'2}} - ac.\)
Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \dfrac{{b'}}{a}\)
Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}, {x_{2}} = \dfrac{{-b' - \sqrt {\Delta '} }}{a}\)
II. Các dạng toán thường gặp về công thức nghiệm thu gọn
Dạng 1: Giải phương trình bậc hai một ẩn bằng cách sử dụng công thức nghiệm thu gọn
Phương pháp:
Xét phương trình bậc hai \( a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = b{'^2} - ac.\)
Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta ' = 0 \) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \dfrac{{b'}}{a}\)
Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}, {x_{2}} =\dfrac{{-b' - \sqrt {\Delta '} }}{a}\)
Dạng 2: Xác định số nghiệm của phương trình bậc hai
Phương pháp:
Xét phương trình bậc hai dạng \(a{x^2} + bx + c = 0 \) với \(b = 2b'\)
+) Phương trình có nghiệm kép \(\Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' = 0\end{array} \right.\)
+) Phương trình có hai nghiệm phân biệt \(\Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right.\)
+) Phương trình vô nghiệm \(\Leftrightarrow \left[ \begin{array}{l}a = 0,b' = 0,c \ne 0\\a \ne 0,\Delta ' < 0\end{array} \right.\)
Dạng 3: Giải và biện luận phương trình bậc hai (dùng một trong hai công thức: công thức nghiệm và công thức nghiệm thu gọn)
Phương pháp:
* Giải và biện luận phương trình bậc hai theo tham số m là tìm tập nghiệm của phương trình tùy theo sự thay đổi của \(m\).
Xét phương trình bậc hai \(a{x^2} + bx + c = 0\) với \(\Delta = {b^2} - 4ac \) (hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac )\)
Trường hợp 1. Nếu \(\Delta < 0\) hoặc \(\left( {\Delta ' < 0} \right)\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \( \Delta = 0\) hoặc \(\left( {\Delta ' = 0} \right)\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}.\)
Trường hợp 3. Nếu \(\Delta > 0\) hoặc \(\left( {\Delta ' > 0} \right)\) thì phương trình có hai nghiệm phân biệt \({x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}, {x_{2}} = \dfrac{{-b' - \sqrt {\Delta '} }}{a}.\)
III. Bài tập về công thức nghiệm thu gọn
Xác định a, b', c rồi dùng công thức nghiệm thu gọn giải các phương trình:
a) \(4{x^2} + 4x + 1 = 0; \)
b) \(13852{x^2} - 14x + 1 = 0;\)
Lời giải:
a) \(4{x^2} + 4x + 1 = 0\)
Ta có: \(a = 4,\ b' = 2,\ c = 1\)
Suy ra \( \Delta' = {2^2} - 4.1 = 0\)
Do đó phương trình có nghiệm kép:
\({x_1} = {x_2} = \dfrac{ - 2}{4} = - \dfrac{1 }{ 2}.\)
b) \(13852{x^2} - 14x + 1 = 0\)
Ta có: \(a = 13852,\ b' = - 7,\ c = 1\)
Suy ra \(\Delta' = {( - 7)^2} - 13852.1 = - 13803 < 0 \)
Do đó phương trình vô nghiệm.
=>> Xem thêm nhiều bài tập khác trong toán 9 chương 4 bài 5 để củng cố kiến thức và rèn luyện kỹ năng làm bài
*****************
Hy vọng với hệ thống kiến thức lý thuyết công thức nghiệm thu gọn trên đây, các em sẽ có thêm một tài liệu học tập hữu ích để học tốt hơn môn Toán 9. Chúc các em luôn học tốt và đạt kết quả cao!