Đề thi vào lớp 10 môn Toán 2021 tỉnh Thái Bình - có đáp án

Đáp án đề thi tuyển sinh lớp 10 môn Toán năm 2021 Thái Bình được cập nhật nhanh và chính xác giúp các bạn tham khảo.

Mời bạn đọc tham khảo đề thi vào lớp 10 môn Toán chính thức từ Sở Giáo dục và Đào tạo tỉnh Thái Bình năm học 2020 - 2021 kèm đáp án chi tiết được cập nhật bên dưới.

Đề thi vào lớp 10 môn Toán 2021 tỉnh Thái Bình

Kỳ thi tuyển sinh vào lớp 10 của tỉnh Thái Bình sẽ diễn ra trong 2 ngày 19/06/2021-20/06/2021 sắp tới. Đề thi chính thức vào lớp 10 môn Toán năm 2021 tỉnh Thái Bình sẽ được cập nhật ngay sau khi kỳ thi diễn ra.

Đề thi vào lớp 10 môn Toán 2021 tỉnh Thái Bình

Đáp án đề thi vào lớp 10 môn Toán 2021 tỉnh Thái Bình

Câu 1.

a)

\(\begin{aligned} &\text { Điều kiện: } x \geq 0, x \neq 4 . \\ &P=\dfrac{1}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+1}+\dfrac{2 \sqrt{x}-7}{x-\sqrt{x}-2} \\ &=\dfrac{1}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+1}+\dfrac{2 \sqrt{x}-7}{(\sqrt{x}+1)(\sqrt{x}-2)} \\ &=\dfrac{\sqrt{x}+1-2(\sqrt{x}-2)+2 \sqrt{x}-7}{(\sqrt{x}+1)(\sqrt{x}-2)} \\ &=\dfrac{\sqrt{x}+1-2 \sqrt{x}+4+2 \sqrt{x}-7}{(\sqrt{x}+1)(\sqrt{x}-2)} \\ &=\dfrac{\sqrt{x}-2}{(\sqrt{x}+1)(\sqrt{x}-2)} \\ &=\dfrac{1}{\sqrt{x}+1} . \\ &\text { Vậy vói } x \geq 0, x \neq 4 \text { thì } P=\dfrac{1}{\sqrt{x}+1} . \end{aligned}\)

b) 

Điều kiện: \(x \geq 0, x \neq 4.\)

Ta có: \(x=3-2 \sqrt{x}=(\sqrt{2}-1)^{2}\) thỏa mãn điều kiện.

\(\Rightarrow \sqrt{x}=\sqrt{3-2 \sqrt{2}}=\sqrt{(\sqrt{2}-1)^{2}}=|\sqrt{2}-1|=\sqrt{2}-1\,\,( \,do \,\,\sqrt{2}-1>0)\)

Thay \(\sqrt{x}=\sqrt{2}-1\) vào biểu thức P ta được:

\( P=\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{2}-1+1}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}.\)

Vậy với \(x=3-2 \sqrt{2}\) thì \(P=\dfrac{\sqrt{2}}{2}.\)

c) 

Điều kiện: \(x \geq 0, x \neq 4.\)

Ta có: \(P=\dfrac{1}{\sqrt{x}+1}.\)

Với \(\forall x \geq 0, x \neq 4\) ta có: \(\sqrt{x} \geq 0 \Rightarrow \sqrt{x}+1 \geq 1\)

\(\Rightarrow \frac{1}{\sqrt{x}+1} \leq 1 \Rightarrow P \leq 1\)

Dấu "=" xảy ra \(\Leftrightarrow \sqrt{x}+1=1 \Leftrightarrow \sqrt{x}=0 \Leftrightarrow x=0\,({tm})\)

Vậy với x = 0 thì giá trị lớn nhất của P là 1 .

Câu 2:

a)

Phương trình \(x^{2}+3 x-1=0\) có: \(\Delta=(-3)^{2}-4 \cdot(-1)=13>0\)

=> Phương trình có hai nghiệm phân biệt \(x_{1}=\frac{-3+\sqrt{13}}{2} \,\,và\, \,x_{2}=\frac{-3-\sqrt{13}}{2}.\)

Vậy phương trình có tập nghiệm: \(S=\left\{\frac{-3-\sqrt{13}}{2} ; \frac{-3+\sqrt{13}}{2}\right\}.\)

b)

Nửa chu vi của mảnh vườn đã cho là: 60: 2=30 (m).

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x, y(m), (\(0<><>).

\(\Rightarrow x+y=30\)

Nểu giảm chiều dài đi 1m và tăng chiều rộng lên 1m thì mảnh vườn trở thành hình vuông nên ta có phương trình: \(x-1=y+1 \Leftrightarrow x-y=2(2)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{\begin{array}{l}x+y=30 \\ x-y=2\end{array} \Leftrightarrow\left\{\begin{array}{l}2 x=32 \\ y=x-2\end{array} \Leftrightarrow\left\{\begin{array}{l}x=16(t m) \\ y=16-2\end{array} \Leftrightarrow\left\{\begin{array}{l}x=16 \\ y=14(t m)\end{array}\right.\right.\right.\right.\)

Vậy chiều dài mảnh vườn là 16m và chiều rộng mảnh vườn là 14m.

Câu 3.

a)

Gọi \(A\left(2 ; y_{A}\right)\) là điểm mà đường thẳng (d) và parabol (P) đều đi qua.

Khi đó ta có:

\(A\left(2 ; y_{A}\right) \in(P) \Rightarrow y_{A}=2^{2}=4 \Rightarrow A(2 ; 4).\)

Lại có: \(A(2 ; 4) \in(d) \Rightarrow 4=m .2+1 \Leftrightarrow m=\frac{3}{2}\)

Vậy \( m=\dfrac{3}{2}\) thỏa mãn bài toán.

b) 

Phương trình hoành độ giao điềm của (d) và (P) là: \(x^{2}=m x+1 \Leftrightarrow x^{2}-m x-1=0\)(*)

Phương trình (*) có: \(\Delta=m^{2}+4>0 \forall m\)

⇒(*) luôn có hai nghiệm phân biệt với mọi m.

⇒(d) luôn cắt (P) tại hai điểm phân biệt với mọi m.

Gọi \(x_{1}, x_{2}\) là các hoành độ giao điểm của (d) và (P) ⇒ \(x_{1}, x_{2}\) là các nghiệm của phương trình (*).

\(⇒ x_{1}^{2}=m x_{1}+1\)

Áp dụng hệ thức Vi-et ta có:

\(\left\{\begin{array}{l}x_{1}+x_{2}=m \\ x_{1} x_{2}=-1\end{array}\right.\).

Theo đề bài ta có: \(x_{2}\left(x_{1}^{2}-1\right)=3\)

\(\Leftrightarrow x_{2}\left(m x_{1}+1-1\right)=3\)

\(\Leftrightarrow m x_{1} x_{2}=3\)

\(\Leftrightarrow-m=3\)

\(\Leftrightarrow m=-3\)

Vậy m = -3 thỏa mãn bài toán.

Câu 4

câu 4 đáp án đề thi tuyển sinh lớp 10 môn Toán năm 2021 Thái Bình

a)

Ta có: ∠BAC, ∠BDC là góc nội tiếp chắn nửa đường tròn (0)

∠BAC =∠BDC = 90°.

=> ∠GAI = ∠GDI = 90° 

Xét tứ giác AIDG ta có: ∠GAI +∠GDI = 90° +90° =180° 

=> AIDG là tứ giác nội tiếp.

b) Xét tứ giác ABEH ta có: ∠AEB = ∠AHB = 90° (gt) 

=> ABEH là tứ giác nội tiếp. (tứ giác có hai đỉnh kề nhau cùng nhìn cạnh đối diện dưới các góc bằng nhau)

∠BHE =∠BAE (hai góc nội tiếp cùng chắn cung BE) 

Mà ∠BAE =∠BCA (hai góc cùng phụ ∠ABC)

∠BHE = ∠BCA= ∠BCI 

Xét △BHE và △BCI có:

∠IBC chung 

∠BHE = ∠BCI (cmt) 

=> △BHE ∽ △BCI (g-g)

\(\Rightarrow \dfrac{B E}{B I}=\dfrac{B H}{B C} \Rightarrow B E \cdot B C=B H \cdot B I(d p c m) .\)

c)
Ta có: B C ⊥ A F => cung AB = cung FB (đường kinh vuông góc với một dây thì đi qua điểm ở chinh giữa của cung căng dây đó).

⇒ ∠BDF=∠BCA (hai góc nội tiếp chẳn 2 cung bằng nhau).

Hay ∠I D K=∠ICK

⇒ CDJK là tức giác nội tiếp. (tứ giác có 2 đỉnh kề nhau củng nhìn 1 cạnh dưới các góc bằng nhau)

⇒ ∠IKC+∠IDC = 180⁰. 

Mà ∠IDC=∠BDC=90⁰(cmt)

⇒ ∠IKC=90⁰ => IK ⊥ BC

\(\begin{aligned} &\text { Xét } \triangle G B C \text { có }\left\{\begin{array}{l} A C \perp B G \\ B D \perp C G \\ A C \cap B D=\{I\} \end{array}\right.\\ &\Rightarrow I \text { là trực tâm } \Delta G B C \Rightarrow G I \perp B C \text { (2) }\\ &\text { Từ (1) và }(2) \Rightarrow G, I, K \text { thẳng hàng. (đpcm) } \end{aligned}\)

Đáp án đề thi tuyển sinh lớp 10 môn Toán năm 2021 Thái Bình câu 4

Câu 5
Đáp án đề thi tuyển sinh lớp 10 môn Toán năm 2021 Thái Bình câu 5
 

-/-

Cùng ôn tập chuẩn bị thật tốt cho kỳ thi sắp tới với đề thi tuyển sinh lớp 10 các năm trước nhé:

Năm 2020

Câu 1. (2,0 điểm)

Cho \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và \(B=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right): \frac{\sqrt{x}}{\sqrt{x-1}}\)  (với \(x>0 ; x \neq 1\))

a) Tính giá trị biểu thức A khi x=9

b) Rút gọn biểu thức B

c) Tìm x để giá trị của A và B trái dấu

Xem chi tiết đề thi và đáp án tại link: Đề thi vào lớp 10 môn Toán 2020 Thái Bình

Năm 2019

Câu 1. (2,0 điểm) 

Cho \(A=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\) và \(B=\frac{1}{\sqrt{x}-1}-\frac{x+2}{x \sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\) (với \(x \geq 0, x \neq 1\)  )

a) Tính giá trị biểu thức A khi x=2

b)  Rút gọn biểu thức B

c) Tìm x sao cho biểu thức C= -A.B nhận giá trị là số nguyên.

Xem chi tiết đề thi và đáp án tại link: Đề thi vào lớp 10 môn Toán tỉnh Thái Bình năm 2019 có đáp án

Năm 2018

Câu 1. (2,0 điểm)

a) Tìm x để biểu thức sau có nghĩa \(P=\sqrt{5 x+3}+2018 \cdot \sqrt[3]{x}\)

b) Cho hàm số \(y=\frac{1}{2} x^{2}\) . Điểm D có hoành độ x= -2 thuộc đồ thị hàm số. Tìm tọa độ điểm D

c) Tìm giá trị của a và b để đường thẳng d: y=ax+b-1 đi qua 2 điểm A(1;1) và B(2;3)

Xem chi tiết đề thi và đáp án tại link: Đề thi Toán vào lớp 10 tỉnh Thái Bình 2018

  Trên đây là toàn bộ nội dung của đề thi tuyển sinh lớp 10 môn Toán 2021 và các năm trước mà Đọc Tài Liệu chia sẻ nhằm giúp các em nắm được các thông tin về kỳ thi này.

   Mong rằng những tài liệu của chúng tôi sẽ là người đồng hành giúp các bạn hoàn thành tốt bài thi của mình.

Xem thêm

Cao Linh (Tổng hợp)
Bài viết đã giải quyết được vấn đề của bạn chưa?
Rồi
Chưa

CÓ THỂ BẠN QUAN TÂM