Những nội dung dưới đây không chỉ giúp bạn biết được cách làm, tham khảo đáp án bài 61 trang 33 SGK Toán 9 tập 1 mà còn hỗ trợ bạn ôn tập để nắm vững các kiến thức bài 8 Toán 9 chương 1 phần đại số đã được học trên lớp về rút gọn biểu thức chứa căn thức bậc hai.
Đề bài 61 trang 33 SGK Toán 9 tập 1
Chứng minh các đẳng thức sau:
a) \(\dfrac{3}{2}\sqrt 6+ 2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt 6}{6}\)
b) \(\left( {x\sqrt {\dfrac{6}{x}} + \sqrt {\dfrac{2x}{3}} + \sqrt {6x} } \right):\sqrt {6x}=\dfrac{7}{3} \) với \(x > 0\)
» Bài tập trước: Bài 60 trang 33 SGK Toán 9 tập 1
Giải bài 61 trang 33 SGK Toán 9 tập 1
Hướng dẫn cách làm
+) Biến đổi vế trái thành vế phải ta sẽ có điều cần chứng minh.
+) Sử dụng công thức sau:
\(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt a}{\sqrt b}\) với \(a\ge 0;b>0\)
Đáp án chi tiết
Dưới đây là các cách giải bài 61 trang 33 SGK Toán 9 tập 1 để các bạn tham khảo và so sánh bài làm của mình:
a) Biến đổi vế trái ta có:
\( VT = \dfrac{3}{2}\sqrt 6+ 2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\)
\(=3\dfrac{\sqrt 6}{2}+2\dfrac{\sqrt{2}}{\sqrt 3}-4\dfrac{\sqrt 3}{\sqrt 2}\)
\(=3\dfrac{\sqrt 6}{2}+2\dfrac{\sqrt 2\sqrt 3}{\sqrt 3 .\sqrt 3}-4.\dfrac{\sqrt 3 .\sqrt 2}{\sqrt 2.\sqrt 2}\)
\(=3\dfrac{\sqrt 6}{2}+2\dfrac{\sqrt 6}{3}-4\dfrac{\sqrt 6}{2}\)
\(=3\dfrac{\sqrt 6 .3}{2.3}+2\dfrac{\sqrt 6 .2}{3.2}-4\dfrac{\sqrt 6 .3}{2.3}\)
\(=9\dfrac{\sqrt 6}{6}+4\dfrac{\sqrt 6}{6}-12\dfrac{\sqrt 6}{6}\)
\(=(9+4-12)\dfrac{\sqrt 6}{6}=\dfrac{\sqrt 6}{6}=VP\)
b) Biến đổi vế trái ta có:
\(VT = \left( {x\sqrt {\dfrac{6}{x}} + \sqrt {\dfrac{2x}{3}} + \sqrt {6x} } \right):\sqrt {6x} \)
\(\eqalign{ & = \left( {x\sqrt {{{6x} \over {{x^2}}}} + \sqrt {{{2x.3} \over {{3^2}}}} + \sqrt {6x} } \right):\sqrt {6x} \cr & = \left( {x{{\sqrt {6x} } \over {\sqrt {{x^2}} }} + {{\sqrt {6x} } \over {\sqrt {{3^2}} }} + \sqrt {6x} } \right):\sqrt {6x} \cr & = \left( {x{{\sqrt {6x} } \over x} + {{\sqrt {6x} } \over 3} + \sqrt {6x} } \right):\sqrt {6x} \cr & = \left( {1.\sqrt {6x} + {1 \over 3}\sqrt {6x} + \sqrt {6x} } \right):\sqrt {6x} \cr & = \left( {1 + {1 \over 3} + 1} \right)\sqrt {6x} :\sqrt {6x} \cr & = {7 \over 3}\sqrt {6x} :\sqrt {6x} \cr & = {7 \over 3}\sqrt {6x} .{1 \over {\sqrt {6x} }} = \dfrac{7}{3} =VP.\cr} \)
» Bài tập tiếp theo: Bài 62 trang 33 SGK Toán 9 tập 1
Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 61 trang 33 SGK Toán 9 tập 1. Mong rằng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học này.