Bài 2 trang 10 SGK Giải tích 12

Xuất bản: 11/05/2018 - Cập nhật: 21/02/2022 - Tác giả:

Hướng dẫn cách làm và đáp án bài 2 trang 10 sách giáo khoa môn Toán đại số và giải tích lớp 12 : Tìm các khoảng đơn điệu của các hàm số

Đề bài : Bài 2 trang 10 SGK Giải tích 12 

Tìm các khoảng đơn điệu của các hàm số:

a)  \(y=\frac{3x+1}{1-x}\) ;                           b) \(y=\frac{x^{2}-2x}{1-x}\) ;

c) \(y=\sqrt{x^{2}-x-20}\) ;              d) \(y=\frac{2x}{x^{2}-9}\).

Hướng dẫn phương pháp giải chi tiết

- Tìm tập xác định của hàm số.

- Tính đạo hàm của hàm số. Tìm các điểm xi (I =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định

- Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên

- Dựa vào bảng biến thiên để kết luận khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó. (nếu y’ > 0 thì hàm số đồng biến, nếu y’ < 0 thì hàm số nghịch biến)

Cần chú ý các tập xác định của hàm số.

Đáp án bài 2 trang 10 SGK Giải Tích lớp 12

a) \(y=\frac{3x+1}{1-x}=\frac{3x+1}{-x+1}\)        

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có: \(y'=\frac{3.1-(-1).1}{{{\left( -x+1 \right)}^{2}}}=\frac{4}{{{\left( -x+1 \right)}^{2}}}>0\ \forall \ x\in D.\)

Bảng biến thiên:

Bảng biến thiên câu a đáp án bài 2 trang 10 SGK giải tích 12 lời giải bài tập

Vậy hàm số đồng biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)

* Chú ý cách tính giới hạn để điền vào bảng biến thiên:

\(\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{3x+1}{1-x}=-3;\ \ \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{3x+1}{1-x}=-\infty ;\ \ \ \underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\frac{3x+1}{1-x}=+\infty \)              

b) \(y=\frac{{{x}^{2}}-2x}{1-x}.\)

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có:

 \(\begin{align}& y'=\frac{\left( 2x-2 \right)\left( 1-x \right)+{{x}^{2}}-2x}{{{\left( 1-x \right)}^{2}}}=\frac{-{{x}^{2}}+2x-2}{{{\left( 1-x \right)}^{2}}}=\frac{-\left( {{x}^{2}}-2x+2 \right)}{{{\left( 1-x \right)}^{2}}}=\frac{-\left( {{x}^{2}}-2x+1 \right)-1}{{{\left( 1-x \right)}^{2}}} \\ & =\frac{-{{\left( x-1 \right)}^{2}}-1}{{{\left( 1-x \right)}^{2}}}=-1-\frac{1}{{{\left( 1-x \right)}^{2}}}<0\ \forall x\in D. \\ \end{align}\)

Bảng biến thiên:

Bảng biến thiên câu b đáp án bài 2 trang 10 SGK giải tích 12 lời giải bài tập

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)           

Chú ý cách tính giới hạn để điền vào bảng biến thiên: Bài 2 trang 10 SGK Giải Tích lớp 12

\(\begin{align}& \underset{x\to +\infty }{\mathop{\lim }}\,\frac{{{x}^{2}}-2x}{1-x}=-\infty ;\ \ \ \ \ \underset{x\to -\infty }{\mathop{\lim }}\,\frac{{{x}^{2}}-2x}{1-x}=+\infty \  \\ & \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{3x+1}{1-x}=+\infty ;\ \ \ \ \ \ \underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\frac{3x+1}{1-x}=-\infty  \\ \end{align}\)

c) \(y=\sqrt{{{x}^{2}}-x-20}\)                     

Có \({{x}^{2}}-x-20\ge 0\Leftrightarrow \left( x+4 \right)\left( x-5 \right)\ge 0\Leftrightarrow \left[ \begin{align} & x\le -4 \\ & x\ge 5 \\ \end{align} \right..\)

Tập xác định: \(D=\left( -\infty ;-4 \right]\cup \left[ 5;+\infty  \right).\)

Có \(y'=\frac{2x-1}{2\sqrt{{{x}^{2}}-x-20}}\Rightarrow y'=0\Leftrightarrow 2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Bảng biến thiên:

Bảng biến thiên câu c đáp án bài 2 trang 10 SGK giải tích 12 lời giải bài tập

Vậy hàm số nghịch biến trên khoảng \(\left( -\infty ;-4 \right)\) và đồng biến trên khoảng \(\left( 5;+\infty  \right).\)           

* Chú ý cách tính giới hạn để điền vào bảng biến thiên:

\(\begin{align}  & \underset{x\to -\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty ;\ \ \ \ \underset{x\to +\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty  \\  & \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0;\ \ \ \ \ \ \ \underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0.\  \\ \end{align}\)

d) \(y=\frac{2x}{{{x}^{2}}-9}.\)

Có \({{x}^{2}}-9\ne 0\Leftrightarrow x\ne \pm 3.\)

Tập xác định:  \(D=R\backslash \left\{ \pm 3 \right\}.\)                                                                     

Có: \(y'=\frac{2\left( {{x}^{2}}-9 \right)-2x.2x}{{{\left( {{x}^{2}}-9 \right)}^{2}}}=\frac{-2{{x}^{2}}-18}{{{\left( {{x}^{2}}-9 \right)}^{2}}}=\frac{-2\left( {{x}^{2}}+9 \right)}{{{\left( {{x}^{2}}-9 \right)}^{2}}}<0\ \forall \ x\in D.\)

Bảng biến thiên:

Bảng biến thiên câu d đáp án bài 2 trang 10 SGK giải tích 12 lời giải bài tập

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ -3 \right);\ \left( -3;\ 3 \right)\) và \(\left( 3;\ +\infty  \right).\)

* Chú ý cách tính giới hạn để điền vào bảng biến thiên:

\(\begin{align}& \underset{x\to -\infty }{\mathop{\lim }}\,\frac{2x}{{{x}^{2}}-9}=0;\ \ \ \ \ \ \ \underset{x\to +\infty }{\mathop{\lim }}\,\frac{2x}{{{x}^{2}}-9}=0 \\ & \underset{x\to -{{3}^{+}}}{\mathop{\lim }}\,\frac{2x}{{{x}^{2}}-9}=+\infty ;\ \ \ \ \ \ \ \underset{x\to -{{3}^{-}}}{\mathop{\lim }}\,\frac{2x}{{{x}^{2}}-9}=-\infty  \\ & \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\frac{2x}{{{x}^{2}}-9}=+\infty ;\ \ \ \ \ \ \ \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\frac{2x}{{{x}^{2}}-9}=-\infty . \\ \end{align}\)

---

Trên đây là hướng dẫn giải bài 2 trang 10 SGK Giải Tích lớp 12. Mời các bạn tham khảo thêm đáp án các bài tập về giải toán 12 bài 1 hoặc hướng dẫn chi tiết các bài tập Giải tích 12 khác tại doctailieu.com.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM