Bài 4 trang 10 SGK giải tích lớp 12

Xuất bản: 11/05/2018 - Cập nhật: 01/03/2023 - Tác giả:

Xem cách làm và đáp án bài 4 trang 10 SGK giải tích lớp 12 trong bài 1: Sự đồng biến, nghịch biến của hàm số

Đề bài

Chứng minh rằng hàm số \(y=\sqrt{2x-{{x}^{2}}}\) đồng biến trên khoảng \(\left( 0;\ 1 \right)\) và nghịch biến trên khoảng \(\left( 1;\ 2 \right).\)

Phương pháp giải: Bài 4 trang 10 SGK giải tích lớp 12 

- Tìm tập xác định của hàm số.

- Tính đạo hàm của hàm số. Tìm các điểm xi (I =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định

- Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên

- Dựa vào bảng biến thiên để kết luận khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó. (nếu y’ > 0 thì hàm số đồng biến, nếu y’ < 0 thì hàm số nghịch biến)

Lời giải bài 4 trang 10 sgk Toán 12

Hàm số xác định khi và chỉ khi: \(2x-{{x}^{2}}\ge 0\Leftrightarrow x\left( x-2 \right)\le 0\Leftrightarrow 0\le x\le 2.\)

Tập xác định: \(D=\left[ 0;\ 2 \right].\)

Có  \(y'=\frac{2-2x}{2\sqrt{2x-{{x}^{2}}}}=\frac{1-x}{\sqrt{2x-{{x}^{2}}}},\forall \ x\in \left( 0;\ 2 \right)\Rightarrow y'=0\Leftrightarrow 1-x=0\Leftrightarrow x=1.\)

\(f\left( 0 \right)=0;\ f\left( 1 \right)=1;\ \ f\left( 2 \right)=0.\)

Bảng biến thiên:

Bảng biến thiên giải toán 12 trang 10 bài 4
 

Vậy hàm số đồng biến trên khoảng \(\left( 0;\ 1 \right)\) và nghịch biến trên khoảng \(\left( 1;\ 2 \right).\)

» Bài tham khảo: bài 5 trang 10 sgk Giải tích 12

Trên đây là lời giải bài 4 trang 10 SGK giải tích lớp 12 . Mời các bạn tham khảo thêm đáp án các bài tập về giải toán 12 bài 1 hoặc hướng dẫn chi tiết các bài tập Giải tích 12 khác tại doctailieu.com.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM