Trang 59 SGK Toán 7 tập 1 Kết nối tri thức

Xuất bản ngày 29/08/2022 - Tác giả:

Giải bài tập 32, 33, 34, 35, 36 trang 59 SGK Toán 7 tập 1 Kết nối tri thức chi tiết hướng dẫn và đáp án giúp các em học tốt hơn

Bài 3.32 trang 59 sgk toán 7 tập 1 Kết nối tri thức

Câu hỏi

Chứng minh rằng: Cho điểm A và đường thẳng d thì có duy nhất đường thẳng đi qua A và vuông góc với d, tức là nếu có hai đường thẳng đi qua A vuông góc với d thì chúng phải trùng nhau.

Bài giải

Giả sử có 2 đường thẳng a và a’ đi qua A và vuông góc với d.

Bai 3.32 trang 59 sgk toan 7 tap 1 Ket noi tri thuc

Vì a \( \bot \)d, mà a’ \( \bot \)d nên a // a’ (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Mà A \( \in \)d, A \( \in \)d’

\( \Rightarrow a \equiv a'\)

Vậy có duy nhất đường thẳng đi qua A và vuông góc với d

Bài 3.33 trang 59 sgk toán 7 tập 1 Kết nối tri thức

Câu hỏi

Vẽ ba đường thẳng phân biệt a,b,c sao cho a//b, b//c và hai đường thẳng phân biệt m, n cùng vuông góc với a. Hỏi trên hình có bao nhiêu cặp đường thẳng song song, có bao nhiêu cặp đường thẳng vuông góc?

Bài giải

Bai 3.33 trang 59 sgk toan 7 tap 1 Ket noi tri thuc

Ta có: +) a // b, b // c nên a // c ( Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau)

+) m \( \bot \) a; n \( \bot \)a nên m // n (Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Theo định lý “Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia, ta có:

+) a // b; a \( \bot \)n nên b \( \bot \)n

+) a // b; a \( \bot \)m nên b \( \bot \)m

+) a // c; a \( \bot \)n nên c \( \bot \)n

+) a // c; a \( \bot \)m nên c \( \bot \)m

Vậy các cặp đường thẳng song song là: a // b ; a // c ; b // c; m // n

Các cặp đường thẳng vuôn góc là: b \( \bot \)n; b \( \bot \)m; c \( \bot \)n; c \( \bot \)m; a \( \bot \)n; a \( \bot \)m

Bài 3.34 trang 59 sgk toán 7 tập 1 Kết nối tri thức

Câu hỏi

Cho Hình 3.50, trong đó hai tia Ax và By nằm trên hai đường thẳng song song. Chứng minh rằng \(\widehat C = \widehat A + \widehat B\)

Bài giải

Qua C kẻ đường thẳng d song song với Ax

Vì Ax // By nên d // By

Vì d // Ax nên \(\widehat A = \widehat {{C_1}}\)(2 góc so le trong)

Vì d // By nên \(\widehat B = \widehat {{C_2}}\) (2 góc so le trong)

\(\widehat C = \widehat {{C_1}} + \widehat {{C_2}}\)

Vậy \(\widehat C = \widehat A + \widehat B\)(đpcm)

Bài 3.35 trang 59 sgk toán 7 tập 1 Kết nối tri thức

Câu hỏi

Cho Hình 3.51, trong đó Ox và Ox’ là hai tia đối nhau

a) Tính tổng số đo ba góc O1, O2, O3 .

Gợi ý: \(\widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} = (\widehat {{O_1}} + \widehat {{O_2}}) + \widehat {{O_3}}\), trong đó \(\widehat {{O_1}} + \widehat {{O_2}} = \widehat {x'Oy}\)

b) Cho \(\widehat {{O_1}} = 60^\circ ,\widehat {{O_2}} = 70^\circ \). Tính \(\widehat {{O_2}}\)

Bài giải

a) Ta có: \(\widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} = (\widehat {{O_1}} + \widehat {{O_2}}) + \widehat {{O_3}}\)=\(\widehat {x'Oy} + \widehat {{O_3}}\), mà \(\widehat {x'Oy} + \widehat {{O_3}}\)= 180\(^\circ \) ( 2 góc kề bù)

Vậy \(\widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} = 180^\circ \)

b) Vì \(\widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} = 180^\circ \)

\(\begin{array}{l} \Rightarrow 60^\circ  + \widehat {{O_2}} + 70^\circ  = 180^\circ \\ \Rightarrow \widehat {{O_2}} = 180^\circ  - 60^\circ  - 70^\circ  = 50^\circ \end{array}\)

Vậy \(\widehat {{O_2}} = 50^\circ \)

Bài 3.36 trang 59 sgk toán 7 tập 1 Kết nối tri thức

Câu hỏi

Cho Hình 3.52, biết \(\widehat {xOy} = 120^\circ ,\widehat {yOz} = 110^\circ \). Tính số đo góc zOx.

Gợi ý: Kẻ thêm tia đối của tia Oy

Bài giải

Bai 3.36 trang 59 sgk toan 7 tap 1 Ket noi tri thuc

Kẻ Ot là tia đối của tia Oy.

Ta được:+) \(\widehat {{O_1}} + \widehat {xOy} = 180^\circ \) ( 2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {{O_1}} + 120^\circ  = 180^\circ \\ \Rightarrow \widehat {{O_1}} = 180^\circ  - 120^\circ  = 60^\circ \end{array}\)

+) \(\widehat {{O_2}} + \widehat {yOz} = 180^\circ \)( 2 góc kề bù)

Vì Ot nằm giữa 2 tia Ox và Oz nên \(\widehat {xOz} = \widehat {{O_1}} + \widehat {{O_2}} = 60^\circ  + 70^\circ  = 130^\circ \)

Vậy \(\widehat {zOx} = 130^\circ \)

Xem thêm:

Trên đây là chi tiết hướng dẫn Giải bài tập Trang 59 SGK Toán 7 tập 1 Kết nối tri thức được Đọc Tài Liệu biên soạn với mong muốn hỗ trợ các em học sinh học tốt hơn môn Toán lớp 7

Hướng dẫn giải Toán 7 Kết nối tri thức bởi Đọc Tài Liệu

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

CÓ THỂ BẠN QUAN TÂM