Bài 3.27 trang 58 sgk toán 7 tập 1 Kết nối tri thức
Câu hỏi
Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó.
Bài giải
Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \(\widehat B + \widehat C = 180^\circ \) ( 2 góc trong cùng phía)
Mặt khác:
\(\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}\)
Bài 3.28 trang 58 sgk toán 7 tập 1 Kết nối tri thức
Câu hỏi
Vẽ hình minh họa và viết giả thiết, kết luận của định lí: “ Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”
Bài giải
Bài 3.29 trang 58 sgk toán 7 tập 1 Kết nối tri thức
Câu hỏi
Kẻ các tia phân giác Ax, By của một cặp góc so le trong tạo bởi đường thẳng b vuông góc với hai đường thẳng song song c, d ( H.3.48). Chứng minh rằng hai tia phân giác đó nằm trên hai đường thẳng song song.
Bài giải
Vì Ax là tia phân giác của góc A vuông nên \(\widehat {{A_1}} = \widehat {{A_2}} = \frac{1}{2}.90^\circ = 45^\circ \)
Vì By là tia phân giác của góc B vuông nên \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}.90^\circ = 45^\circ \)
Vì \(\widehat {{A_2}} = \widehat {{B_2}}( = 45^\circ )\), mà hai góc này ở vị trí so le trong nên Ax // By (Dấu hiệu nhận biết hai đường thẳng song song)
Bài 3.30 trang 58 sgk toán 7 tập 1 Kết nối tri thức
Câu hỏi
Cho hai đường thẳng phân biệt a, b cùng vuông góc với đường thẳng c; d là một đường thẳng khác c và d vuông góc với a. Chứng minh rằng:
a) a // b; b) c // d; c) b\( \bot \)d
Bài giải
a) Vì \(c \bot a;c \bot b \Rightarrow a//b\) ( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
b) Vì \(a \bot c;a \bot d \Rightarrow c//d\)( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
c) Vì \(b \bot c;c//d \Rightarrow b \bot c\) ( đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)
Bài 3.31 trang 58 sgk toán 7 tập 1 Kết nối tri thức
Câu hỏi
Cho Hình 3.49. Chứng minh rằng:
a) d // BC; b) d \( \bot \)AH; c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?
Bài giải
a) Vì \(\widehat {{A_1}} = \widehat {{C_1}}( = 50^\circ )\), mà 2 góc này ở vị trí so le trong nên d // BC (Dấu hiệu nhận biết hai đường thẳng song song ) (đpcm)
b) Vì d // BC, mà AH \( \bot \)BC nên d \( \bot \)BC ( Đường thẳng vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng kia)
c) Trong các kết luận trên, kết luận a) được suy ra từ dấu hiệu nhận biết hai đường thẳng song song
Kết luận b) được suy ra từ tính chất của hai đường thẳng song song.
Bài tiếp theo: Trang 59 SGK Toán 7 tập 1 Kết nối tri thức
Xem thêm:
- Trang 45 SGK Toán 7 tập 1 Kết nối tri thức
- Trang 49 SGK Toán 7 tập 1 Kết nối tri thức
- Trang 50 SGK Toán 7 tập 1 Kết nối tri thức
- Trang 53 SGK Toán 7 tập 1 Kết nối tri thức
- Trang 54 SGK Toán 7 tập 1 Kết nối tri thức
- Trang 57 SGK Toán 7 tập 1 Kết nối tri thức
Trên đây là chi tiết hướng dẫn Giải bài tập Trang 58 SGK Toán 7 tập 1 Kết nối tri thức được Đọc Tài Liệu biên soạn với mong muốn hỗ trợ các em học sinh học tốt hơn môn Toán lớp 7
Hướng dẫn giải Toán 7 Kết nối tri thức bởi Đọc Tài Liệu