Hướng dẫn trả lời câu hỏi và giải bài tập Toán 8 Kết nối tri thức tập 1 giúp học sinh nắm được các cách giải bài tập Chương 4: Định lí Thalès chuẩn bị bài trước khi tới lớp và luyện tập giải toán tại nhà.
Chương 4 Bài 17: Tính chất đường phân giác của tam giác
Mở đầu trang 84 Toán 8 Tập 1: Trong H.4.19, AD là đường phân giác của tam giác ABC. Hai tỉ số \(\dfrac{DB}{DC}\) và \(\dfrac{AB}{AC}\) có bằng nhau không?
Lời giải:
Theo đề bài, AD là đường phân giác của tam giác ABC.
Áp dụng tính chất đường phân giác của tam giác, ta có: \(\dfrac{DB}{DC} = \dfrac{AB}{AC}\)
HĐ1 trang 84 Toán 8 Tập 1: Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.
Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số \(\dfrac{DB}{DC}\) và \(\dfrac{AB}{AC}\)
Lời giải:
Theo đề bài, At là tia phân giác của góc xAy hay AD là tia phân giác của góc BAC.
Tam giác ABC cân tại A (vì AB = AC) có AD là tia phân giác của góc BAC nên AD cũng là đường trung tuyến của tam giác ABC.
Suy ra D là trung điểm của cạnh BC hay DB = DC nên \(\dfrac{DB}{DC} = 1\)
Vì AB = AC nên \(\dfrac{AB}{AC} = 1\)
Vậy khi lấy B và C sao cho AB = AC thì \(\dfrac{DB}{DC} = \dfrac{AB}{AC}\)
HĐ2 trang 84 Toán 8 Tập 1: Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.
Khi lấy B và C sao cho AB = 2 cm và AC = 4 cm (H.4.20b), hãy dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC rồi so sánh hai tỉ số \(\dfrac{DB}{DC}\) và \(\dfrac{AB}{AC}\)
Lời giải:
Dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC, ta được:
DB = 11 mm = 1,1 cm và DC = 22 mm = 2,2 cm.
Khi đó, \(\dfrac{DB}{DC} = \dfrac{1,1}{2,2} = \dfrac{1}{2}; \dfrac{AB}{AC} = \dfrac{2}{4} = \dfrac{1}{2}\)
Vậy khi lấy B và C sao cho AB = 2 cm và AC = 4 cm thì \(\dfrac{DB}{DC} = \dfrac{AB}{AC}\)
Luyện tập trang 85 Toán 8 Tập 1: Tính độ dài x trên Hình 4.23.
Lời giải:
Bài tập
Bài 4.10 trang 86 Toán 8 Tập 1: Tính độ dài x trên Hình 4.24.
Lời giải:
Bài 4.11 trang 86 Toán 8 Tập 1:
Cho tam giác ABC. Đường phân giác trong của góc A cắt BC tại D. Tính độ dài đoạn thẳng DC biết AB = 4,5 m; AC = 7,0 m và CB = 3,5 m (làm tròn kết quả đến hàng phần chục).Lời giải:
Bài 4.12 trang 86 Toán 8 Tập 1: Nhà bạn Mai ở vị trí M, nhà bạn Dung ở vị trí D (Hình 4.25), biết rằng tứ giác ABCD là hình vuông và M là trung điểm của AB. Hai bạn đi bộ với cùng một vận tốc trên con đường MD để đến điểm I. Bạn Mai xuất phát lúc 7h. Hỏi bạn Dung xuất phát lúc mấy giờ để gặp bạn Mai lúc 7h30 tại điểm I?
Lời giải:
Theo đề bài, ABCD là hình vuông nên AB = AD và AC là tia phân giác của \(\widehat{BAD}\)
Vì M là trung điểm của AB nên \(AM = BM = \dfrac{1}{2}AB = \dfrac{1}{2}AD\) hay \(\dfrac{AM}{AD} = \dfrac{1}{2}\)
Vì AC là tia phân giác của \(\widehat{BAD}\) hay AI là tia phân giác của \(\widehat{MAD}\), áp dụng tính chất đường phân giác trong tam giác ADM, ta có:
\(\dfrac{AM}{AD} = \dfrac{IM}{ID} =\dfrac{1}{2}\) suy ra ID = 2IM.
Theo đề bài, I là địa điểm gặp nhau nên bạn Mai đi theo quãng đường MI, bạn Dung đi theo quãng đường DI.
Ta có S = vt, mà quãng đường bạn Dung đi gấp 2 lần quãng đường bạn Mai đi và vận tốc đi bộ của hai bạn đều bằng nhau nên thời gian bạn Dung đi gấp 2 lần thời gian bạn Mai đi thì hai bạn mới gặp nhau tại địa điểm I.
Bạn Dung gặp bạn Mai lúc 7h30 nên thời gian bạn Mai đi trên quãng đường MI là:
7h30 – 7h = 30 phút.
Khi đó, thời gian bạn Dung đi là 1h. Do đó, bạn Dung xuất phát từ lúc:
7h30 – 1h = 6h30.
Vậy bạn Dung xuất phát lúc 6h30 để gặp bạn Mai lúc 7h30 tại điểm I.
-//-
Hy vọng với nội dung trả lời chi tiết câu hỏi trong Bài 17: Tính chất đường phân giác của tam giác giúp học sinh nắm được nội dung bài học và ghi nhớ những nội dung chính, quan trọng trong chương trình học Toán học 8.