Bài 87 trang 100 SGK Toán 9 tập 2

Bài 87 trang 100 SGK Toán 9 tập 2 được hướng dẫn chi tiết giúp bạn giải bài tập trang 100 sách giáo khoa Toán lớp 9 tập 2 và ôn tập các kiến thức đã học.

Đáp án bài 87 trang 100 SGK Toán 9 tập 2 được biên soạn bởi Đọc Tài Liệu nhằm mục đích tham khảo phương pháp làm bài. Tài liệu cũng giúp các bạn ôn tập nội dung kiến thức trong Toán 9 chương 3 phần hình học về diện tích hình tròn, hình quạt tròn.

Đề bài 87 trang 100 SGK Toán 9 tập 2

Lấy cạnh \(BC\) của một tam giác đều làm đường kính, vẽ một nửa đường tròn về cùng một phía với tam giác ấy đối với đường thẳng \(BC\). Cho biết cạnh \(BC = a\), hãy tính diện tích hình viên phân được tạo thành.

» Bài tập trước: Bài 86 trang 100 SGK Toán 9 tập 2

Giải bài 87 trang 100 SGK Toán 9 tập 2

Hướng dẫn cách làm

+) Sử dụng công thức tính diện tích quạt tròn bán kính \(R\), số đo \(n^\circ \)\(S = \dfrac{{\pi {R^2}n}}{{360}}\)

+) Công thức tính diện tích tam giác \(S = \dfrac{1}{2}ah\) với \(a\) là độ dài cạnh đáy, \(h\) là chiều cao ứng với cạnh đáy.

+) Diện tích hình viên phân = Diện tích cung tròn \(MqB\) - Diện tích tam giác \(OMB.\)

Đáp án chi tiết

Dưới đây là các cách giải bài 87 trang 100 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

Bài 87 trang 100 SGK Toán 9 tập 2

Gọi \(D,E\) lần lượt là giao của hai cạnh \(AB,AC\) với nửa đường tròn đường kính \(BC\) có tâm \(O\) là trung điểm \(BC.\)

Bán kính nửa đường tròn này là \(R = \dfrac{{BC}}{2} = \dfrac{a}{2}\)

Nối \(OE;OD.\) Xét tam giác \(OBE\)\(OE = OB = R = \dfrac{{BC}}{2} = \dfrac{a}{2}\)\(\widehat B = 60^\circ  \Rightarrow \Delta OBE\) là tam giác đều cạnh \(\dfrac{a}{2}\)

Tương tự ta có \(\Delta OCD\) đều cạnh \(\dfrac{a}{2}.\)  

+ Diện tích hình viên phân thứ nhất là \({S_1} = {S_{qBOE}} - {S_{\Delta BOE}}\)

Diện tích hình quạt \(BOE\) có bán kính \(R = OB = \dfrac{a}{2}\) và số đo cung \(BE = \widehat {BOE} = 60^\circ \)  là \({S_{qBOE}} = \dfrac{{\pi {R^2}n}}{{360}} = \dfrac{{\pi {{\left( {\dfrac{a}{2}} \right)}^2}.60}}{{360}} = \dfrac{{\pi {a^2}}}{{24}}\)

Kẻ \(EH \bot OB\) tại \(H\) suy ra \(H\) là trung điểm của \(OB\) (vì tam giác \(OEB\) đều nên \(EH\) vừa là đường cao vừa là đường trung tuyến). Suy ra \(OH = \dfrac{{OB}}{2} = \dfrac{{\dfrac{a}{2}}}{2} = \dfrac{a}{4}.\)

Xét tam giác \(EHO\) vuông tại \(H,\) theo định lý Pytago ta có \(EH = \sqrt {E{O^2} - O{H^2}}  = \sqrt {{{\left( {\dfrac{a}{2}} \right)}^2} - {{\left( {\dfrac{a}{4}} \right)}^2}}  = \dfrac{{\sqrt 3 }}{4}a\)

Diện tích tam giác \(EOB\)\({S_{\Delta BOE}} = \dfrac{1}{2}EH.OB = \dfrac{1}{2}.\dfrac{{a\sqrt 3 }}{4}.\dfrac{a}{2} = \dfrac{{{a^2}\sqrt 3 }}{{16}}\) 

Từ đó diện tích hình viên phân thứ nhất là  \({S_1} = {S_{qBOE}} - {S_{\Delta BOE}} = \dfrac{{\pi {a^2}}}{{24}} - \dfrac{{{a^2}\sqrt 3 }}{{16}} = \dfrac{{{a^2}\left( {2\pi  - 3\sqrt 3 } \right)}}{{48}}\)

Tương tự ta có diện tích hình viên phân thứ nhất là  \({S_2} = {S_{qDOC}} - {S_{\Delta OCD}} = \dfrac{{{a^2}\left( {2\pi  - 3\sqrt 3 } \right)}}{{48}}.\) 

Vậy diện tích hai hình viên phhân bên ngoài tam giác là:

\(S=S_1+S_2=\dfrac{a^{2}}{24}\left ( 2\pi -3\sqrt{3} \right ).\)

» Bài tiếp theo: Bài 88 trang 103 SGK Toán 9 tập 2

Nội dung trên đã giúp bạn nắm được cách làm bài 87 trang 100 SGK Toán 9 tập 2. Hy vọng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ giúp các bạn hoàn thành bài tập chính xác và học tốt môn học này.

doctailieu.com
Tải về
bài viết bạn đã xem
Back to top