Bài 40 trang 57 SGK Toán 9 tập 2

Xuất bản: 11/11/2019 - Cập nhật: 25/11/2019 - Tác giả: Giangdh

Bài 40 trang 57 SGK Toán 9 tập 2 được hướng dẫn chi tiết giúp bạn giải bài tập trang 57 sách giáo khoa Toán lớp 9 tập 2 và ôn tập các kiến thức đã học.

Lời giải bài 40 trang 57 SGK Toán 9 tập 2 được chia sẻ với mục đích tham khảo cách làm và so sánh đáp án. Cùng với đó góp phần giúp bạn ôn tập lại các kiến thức Toán 9 chương 4 phần đại số để tự tin hoàn thành tốt các bài tập liên quan tới phương trình quy về phương trình bậc hai về Phương trình quy về phương trình bậc hai.

Đề bài 40 trang 57 SGK Toán 9 tập 2

Giải phương trình bằng cách đặt ẩn phụ:

a) \(3{({x^2} + {\rm{ }}x)^2}-{\rm{ }}2({x^2} + {\rm{ }}x){\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\) 

b) \({({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2)^2} + {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\)

c) \(x - \sqrt{x} = 5\sqrt{x} + 7\)                          

d) \(\dfrac{x}{x+ 1} – 10 . \dfrac{x+1}{x}= 3\)

» Bài tập trước: Bài 39 trang 57 SGK Toán 9 tập 2

Giải bài 40 trang 57 SGK Toán 9 tập 2

Hướng dẫn cách làm

a) Đặt \(t{\rm{ }} = {\rm{ }}{x^2} + {\rm{ }}x\), ta có phương trình \(3{t^2}-{\rm{ }}2t{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0\). Giải phương trình này, ta tìm được hai giá trị của \(t\). Thay mỗi giá trị của \(t\) vừa tìm được vào đằng thức \(t{\rm{ }} = {\rm{ }}{x^2} + {\rm{ }}x\) , ta được một phương trình của ẩn \(x\). Giải mỗi phương trình này sẽ tìm được giá trị của \(x\).

b) Đặt \({x^2} - 4x + 2 = t\)

c) Đặt \(\sqrt x  = t\left( {t \ge 0} \right)\) 

d) Đặt \(\dfrac{x+1}{x} = t\) hoặc \(\dfrac{x}{x+ 1} = t\)

Đáp án chi tiết

Dưới đây là các cách giải bài 40 trang 57 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

a) Đặt \({x^2} + x = t\) ta được phương trình \(3{t^2} - 2t - 1 = 0\)

Phương trình này có \(a + b + c = 3 + \left( { - 2} \right) + \left( { - 1} \right) = 0\) nên có hai nghiệm \(t = 1;t =  - \dfrac{1}{3}\)

+ Với \({t_1} = 1\) ta có \({x^2} + x = 1\) hay \({x^2} + x - 1 = 0\)\(\Delta  = {1^2} + 4.1.1 = 5 > 0\) nên phương trình có hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}\)

+ Với \(t =  - \dfrac{1}{3} \Rightarrow {x^2} + x =  - \dfrac{1}{3}\)\( \Leftrightarrow 3{x^2} + 3x + 1 = 0\)\(\Delta  = {3^2} - 4.3.1 =  - 3 < 0\) nên phương trình vô nghiệm.

Vậy phương trình đã cho có hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}.\)

b) Ta có

\(\begin{array}{l}{\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x - 4 = 0\\ \Leftrightarrow {\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x + 2 - 6 = 0\end{array}\)

Đặt \(t = {x^2} - 4x + 2\) ta được phương trình \({t^2} + t - 6 = 0\)\(\Delta  = {1^2} - 4.1.\left( { - 6} \right) = 25 > 0 \)\(\Rightarrow \sqrt \Delta   = 5\) nên có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{ - 1 + 5}}{2} = 2\\t = \dfrac{{ - 1 - 5}}{2} =  - 3\end{array} \right.\)

+ Với \(t = 2 \Rightarrow {x^2} - 4x + 2 = 2 \)\(\Leftrightarrow {x^2} - 4x = 0 \)\(\Leftrightarrow x\left( {x - 4} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 4 = 0\end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\) 

+ Với \(t =  - 3 \Leftrightarrow {x^2} - 4x + 2 =  - 3\)\( \Leftrightarrow {x^2} - 4x + 5 = 0\)\(\Delta  = {\left( { - 4} \right)^2} - 4.1.5 =  - 4 < 0\) nên phương trình này vô nghiệm.

Vậy phương trình đã cho có nghiệm \(x = 0;x = 4.\)

c) \(x - \sqrt x  = 5\sqrt x  + 7 \)\(\Leftrightarrow x - 6\sqrt x  - 7 = 0\)

ĐK: \(x \ge 0\) 

Đặt \(\sqrt x  = t\,\left( {t \ge 0} \right)\) ta được phương trình \({t^2} - 6t - 7 = 0\)\(a - b + c = 1 - \left( { - 6} \right) + \left( { - 7} \right) = 0\)  nên có hai nghiệm \(\left[ \begin{array}{l}t =  - 1\left( L \right)\\t = 7\left( N \right)\end{array} \right.\)

Với \(t = 7 \Rightarrow \sqrt x  = 7 \Leftrightarrow x = 49\,\left( {TM} \right)\)

Vậy phương trình có nghiệm \(x = 49.\)

d) ĐK:\(x \ne \left\{ { - 1;1} \right\}\)

Đặt \(\dfrac{x}{{x + 1}} = t \Rightarrow \dfrac{{x + 1}}{x} = \dfrac{1}{t}\) , ta có phương trình \(t - 10.\dfrac{1}{t} = 3 \Rightarrow {t^2} - 3t - 10 = 0\)

Phương trình trên có \(\Delta  = {\left( { - 3} \right)^2} - 4.1.\left( { - 10} \right) = 49 > 0 \Rightarrow \sqrt \Delta   = 7\)  nên có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{3 + 7}}{2} = 5\\t = \dfrac{{3 - 7}}{2} =  - 2\end{array} \right.\)

+ Với \(t = 5 \Rightarrow \dfrac{x}{{x + 1}} = 5 \\\Rightarrow 5x + 5 = x \Leftrightarrow x =  - \dfrac{5}{4}\left( {TM} \right)\)

+ Với \(t =  - 3 \Rightarrow \dfrac{x}{{x + 1}} =  - 3\\ \Rightarrow x =  - 3x - 3 \Leftrightarrow x =  - \dfrac{3}{4}\left( {TM} \right)\) 

Vậy phương trình có hai nghiệm \(x =  - \dfrac{5}{4};x =  - \dfrac{3}{4}.\)

» Bài tiếp theo: Bài 41 trang 58 SGK Toán 9 tập 2

Nội dung trên đã giúp bạn nắm được cách làm bài 40 trang 57 SGK Toán 9 tập 2. Hy vọng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ giúp các bạn hoàn thành bài tập chính xác và học tốt môn học này.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM