Bạn muốn giải bài 37 trang 56 SGK Toán 9 tập 2 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết, không chỉ tham khảo cách làm hoặc đáp án mà bài viết này còn giúp bạn nắm vững lại các kiến thức Toán 9 chương 4 phần đại số để tự tin giải tốt các bài tập khác về Phương trình quy về phương trình bậc hai.
Đề bài 37 trang 56 SGK Toán 9 tập 2
Giải phương trình trùng phương:
a) \(9{x^4} - 10{x^2} + 1 = 0\);
b) \(5{x^4} + 2{x^2}{\rm{ - }}16 = 10{\rm{ - }}{x^2}\);
c) \(0,3{x^4} + 1,8{x^2} + 1,5 = 0\);
d) \(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\)
» Bài tập trước: Bài 36 trang 56 SGK Toán 9 tập 2
Giải bài 37 trang 56 SGK Toán 9 tập 2
Hướng dẫn cách làm
Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)
Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)
Đáp án chi tiết
Dưới đây là các cách giải bài 37 trang 56 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:
a) \(9{x^4} - 10{x^2} + 1 = 0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(9{t^2}-{\rm{ }}10t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\).
Vì \(a + b + c = 9 – 10 + 1 = 0\) nên \(\displaystyle {t_1} = 1,{t_2} = {1 \over 9}\)
Suy ra: \(\displaystyle {x_1} = - 1,{x_2} = 1,{x_3} = - {1 \over 3},{x_4} = {\rm{ }}{1 \over 3}\)
b) \(5{x^4} + 2{x^2}{\rm{ - }}16 = 10{\rm{ - }}{x^2}\)
\( \Leftrightarrow {\rm{ }}5{x^4} + {\rm{ }}3{x^2}-{\rm{ }}26{\rm{ }} = {\rm{ }}0\).
Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(5{t^2} + {\rm{ }}3t{\rm{ }} - 26{\rm{ }} = {\rm{ }}0\)
\(\Delta {\rm{ }} = {\rm{ }}9{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}26{\rm{ }} = {\rm{ }}529{\rm{ }} = {\rm{ }}{23^2}\);
\({\rm{ }}{t_1} = {\rm{ }}2,{\rm{ }}{t_2} = {\rm{ }} - 2,6\) (loại). Do đó: \({x_1} = {\rm{ }}\sqrt 2 ,{\rm{ }}{x_2} = {\rm{ }} - \sqrt 2 \)
c) \(0,3{x^4} + 1,8{x^2} + 1,5 = 0\)
\( \Leftrightarrow {\rm{ }}{x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)
Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có:
\({t^2} + {\rm{ }}6t{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)
\({\rm{ }}{t_1} = {\rm{ }} - 1\) (loại), \({\rm{ }}{t_2} = {\rm{ }} - 5\) (loại).
Phương trình vô nghiệm.
Chú ý: Cũng có thể nhận xét rằng vế trái \({x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} \ge {\rm{ }}5\), còn vế phải bằng 0. Vậy phương trình vô nghiệm.
d) \(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\) \( \displaystyle \Leftrightarrow 2{x^2} + 5 - {\rm{ }}{1 \over {{x^2}}} = 0\).
Điều kiện \(x ≠ 0\)
\(2{x^4} + {\rm{ }}5{x^2}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có:
\(2{t^2} + 5t{\rm{ - }}1 = 0;\Delta = 25 + 8 = 33\),
\(\displaystyle {t_1} = {\rm{ }}{{ - 5 + \sqrt {33} } \over 4},{t_2} = {\rm{ }}{{ - 5 - \sqrt {33} } \over 4}\) (loại)
Do đó \(\displaystyle {x_1} = {\rm{ }}{{\sqrt { - 5 + \sqrt {33} } } \over 2},{x_2} = {\rm{ }} - {{\sqrt { - 5 + \sqrt {33} } } \over 2}\)
» Bài tiếp theo: Bài 38 trang 56 SGK Toán 9 tập 2
Trên đây là nội dung hướng dẫn trả lời bài 37 trang 56 SGK Toán 9 tập 2 được Đọc Tài Liệu chia sẻ để giúp bạn hoàn thành tốt bài làm của mình. Mong rằng những tài liệu giải Toán 9 của chúng tôi sẽ luôn là người bạn đồng hành để giúp bạn học tốt hơn môn học này.