Bài 33 trang 54 SGK Toán 9 tập 2

Xuất bản: 11/11/2019 - Cập nhật: 25/11/2019 - Tác giả: Giangdh

Bài 33 trang 54 SGK Toán 9 tập 2 được giải bởi ĐọcTàiLiệu giúp bạn nắm được cách làm và tham khảo đáp án bài 33 trang 54 sách giáo khoa Toán lớp 9 tập 2.

Bạn muốn giải bài 33 trang 54 SGK Toán 9 tập 2 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết, không chỉ tham khảo cách làm hoặc đáp án mà bài viết này còn giúp bạn nắm vững lại các kiến thức Toán 9 chương 4 phần đại số để tự tin giải tốt các bài tập khác về Hệ thức Vi-ét và ứng dụng.

Đề bài 33 trang 54 SGK Toán 9 tập 2

Chứng tỏ rằng nếu phương trình \(a{x^2} + bx + c = 0\) có nghiệm là \({x_1}\) và \({x_2}\) thì tam thức  \(a{x^2} + bx + c \) phân tích được thành nhân tử như sau:

\(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\).

Áp dụng: Phân tích đa thức thành nhân tử.

a)\(2{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}3\)

b) \({\rm{ }}3{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}2\)

» Bài tập trước: Bài 32 trang 54 SGK Toán 9 tập 2

Giải bài 33 trang 54 SGK Toán 9 tập 2

Hướng dẫn cách làm

+ Biến đổi vế phải \(a(x-x_1)(x-x_2)\) và sử dụng hệ thức Vi-ét để đưa về bằng với vế trái \(ax^2+bx+c\).

+ Áp dụng: Tìm nghiệm của mỗi phương trình bằng công thức nghiệm rồi thay vào công thức \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\).

Đáp án chi tiết

Dưới đây là các cách giải bài 33 trang 54 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

\(x_1;x_2\) là hai nghiệm của phương trình \(ax^2+bx+c=0\) nên theo hệ thức Vi-ét ta có

\(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{b}{a}\\{x_1}.{x_2} = \dfrac{c}{a}\end{array} \right.\)

Xét \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\).

Biến đổi vế phải:

\(a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2}){\rm{ }} \)

\(= a\left( {{x^2} - x{x_2} - x{x_1} + {x_1}{x_2}} \right) \)

\(= {\rm{ }}a{x^2}-{\rm{ }}a({x_1} + {\rm{ }}{x_2})x{\rm{ }} + {\rm{ }}a{x_1}{x_2}\)

\(\displaystyle = a{x^2} - a\left( { - {b \over a}} \right)x + a{c \over a} = a{x^2} + bx + c\)

Vậy phương trình \(a{x^2} + bx + c = 0\) có nghiệm là \({x_1},{x_2}\) thì:

\(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\).

Áp dụng:

a) Phương trình \(2{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\) có \(a + b + c = 2 – 5 + 3 = 0\) nên có hai nghiệm là \(\displaystyle {x_1} = 1,{x_2} = {\rm{ }}{3 \over 2}\) nên:

\(\displaystyle 2{x^2}{\rm{  + }}5x + 3 = 2(x{\rm{ - }}1)(x - {\rm{ }}{3 \over 2}) = (x - 1)(2x - 3)\)

b) Phương trình  \({\rm{ }}3{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}2=0\) có \(a = 3, b = 8, b’ = 4, c = 2\).

Nên \(\Delta' {\rm{ }} = {\rm{ }}{4^2}-{\rm{ }}3{\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }}10\) suy ra phương trình có hai nghiệm là:

\({x_1}\) = \(\dfrac{-4 - \sqrt{10}}{3}\), \({x_2}\)= \(\dfrac{-4 + \sqrt{10}}{3}\)

nên: \(\displaystyle 3{x^2} + 8x + 2 = 3(x - {\rm{ }}{{ - 4 - \sqrt {10} } \over 3})(x - {\rm{ }}{{ - 4 + \sqrt {10} } \over 3})\)

\(\displaystyle  = 3(x + {\rm{ }}{{4 + \sqrt {10} } \over 3})(x + {\rm{ }}{{4 - \sqrt {10} } \over 3})\)

» Bài tiếp theo: Bài 34 trang 56 SGK Toán 9 tập 2

Trên đây là hướng dẫn cách làm và đáp án bài 33 trang 54 Toán đại số 9 tập 2. Các em cũng có thể tham khảo thêm các bài tập tại chuyên mục giải Toán 9 của doctailieu.com.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM