Bài 25 trang 19 SGK Toán 9 tập 2

Bài 25 trang 19 SGK Toán 9 tập 2 được giải bởi ĐọcTàiLiệu giúp bạn nắm được cách làm và tham khảo đáp án bài 25 trang 19 sách giáo khoa Toán lớp 9 tập 2.

Bạn muốn giải bài 25 trang 19 SGK Toán 9 tập 2 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết, không chỉ tham khảo cách làm hoặc đáp án mà bài viết này còn giúp bạn nắm vững lại các kiến thức Toán 9 chương 3 phần đại số để tự tin giải tốt các bài tập khác về giải hệ phương trình bằng phương pháp cộng đại số.

Đề bài 25 trang 19 SGK Toán 9 tập 2

Giải hệ các phương trình:

a) \(\left\{\begin{matrix} 2(x + y)+ 3(x - y)=4 & & \\ (x + y)+2 (x - y)= 5& & \end{matrix}\right.\);         

b) \(\left\{\begin{matrix} 2(x -2)+ 3(1+ y)=-2 & & \\ 3(x -2)-2 (1+ y)=-3& & \end{matrix}\right.\)

» Bài tập trước: Bài 24 trang 19 SGK Toán 9 tập 2

Giải bài 25 trang 19 SGK Toán 9 tập 2

Hướng dẫn cách làm

Cách 1: Thực hiện nhân phá ngoặc thu gọn vế trái rồi áp dụng quy tắc cộng đại số để giải hệ phương trình.

Cách 2. Sử dụng phương pháp đặt ẩn phụ

+) Đặt điều kiện (nếu có).

+) Đặt ẩn phụ và điều kiện của ẩn (nếu có).

+) Giải hệ phương trình theo các ẩn đã đặt.

+) Thay kết quả tìm được vào ẩn ban đầu để tìm nghiệm của hệ.

Đáp án chi tiết

Dưới đây là các cách giải bài 25 trang 19 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

a) Cách 1:  Thực hiện nhân phá ngoặc và thu gọn, ta được:

\(\left\{\begin{matrix} 2(x+y)+3(x-y) =4 & & \\ (x+y) +2(x-y) =5  & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2x+2y+3x-3y =4 & & \\ x+y +2x-2y =5  & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix}5x-y =4 & & \\ 3x-y =5  & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}2x =-1 & & \\ 3x-y =5  & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix}x =-\dfrac{1}{2} & & \\ y =3x-5  & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}x =-\dfrac{1}{2} & & \\ y =3.\dfrac{-1}{2}-5  & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix}x =-\dfrac{1}{2} & & \\ y =\dfrac{-13}{2}  & & \end{matrix}\right.\)

Vậy hệ đã cho có nghiệm duy nhất là \({\left( \dfrac{-1}{2}; \dfrac{-13}{2} \right)}\).

Cách 2: Đặt ẩn phụ.

Đặt \(\left\{\begin{matrix}x+y=u & & \\ x-y=v  & & \end{matrix}\right.\)  ta có hệ phương trình mới (ẩn \(u,\ v\) )

\(\left\{\begin{matrix} 2u + 3v = 4 & & \\ u + 2v = 5& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2u + 3v = 4 & & \\ 2u + 4v = 10& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2u + 3v = 4 & & \\ -v = -6& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2u + 3v = 4 & & \\ v = 6& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2u = 4- 3 . 6 & & \\ v = 6& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} u = -7 & & \\ v = 6& & \end{matrix}\right.\)

Với \(u=-7;v=6\) thay lại cách đặt, ta được:

\(\left\{\begin{matrix} x+ y = -7 & & \\ x - y = 6& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2x = -1 & & \\ x - y = 6& & \end{matrix}\right.\)

\(\left\{\begin{matrix} x=\dfrac{-1}{2} & & \\  y = x- 6 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x =-\dfrac{1}{2} & & \\ y = -\dfrac{13}{2}& & \end{matrix}\right.\)

Vậy hệ đã cho có nghiệm duy nhất là \({\left( \dfrac{-1}{2}; \dfrac{-13}{2} \right)}\).

b) Phá ngoặc và thu gọn vế trái của hai phương trình trong hệ, ta được:

\(\left\{\begin{matrix} 2(x-2)+3(1+y)=-2 & & \\ 3(x - 2)- 2(1+ y) = -3& & \end{matrix}\right.\)

\(\left\{\begin{matrix} 2x-4+3+3y=-2 & & \\ 3x - 6- 2-2 y = -3& & \end{matrix}\right.\) 

⇔ \(\left\{\begin{matrix} 2x+3y=-1 & & \\ 3x-2 y = 5& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} 6x+9y=-3 & & \\ 6x-4 y = 10& & \end{matrix}\right.\)

\(\left\{\begin{matrix} 6x+9y=-3 & & \\ 13y = -13& & \end{matrix}\right.\)\(\left\{\begin{matrix} 6x=-3 - 9y & & \\ y = -1& & \end{matrix}\right.\)

\(\left\{\begin{matrix} 6x=6 & & \\ y = -1& & \end{matrix}\right.\)\(\left\{\begin{matrix} x=1 & & \\ y = -1& & \end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((1; -1)\).

» Bài tiếp theo: Bài 26 trang 19 SGK Toán 9 tập 2

Trên đây là hướng dẫn cách làm và đáp án bài 25 trang 19 Toán đại số 9 tập 2. Các em cũng có thể tham khảo thêm các bài tập tại chuyên mục giải Toán 9 của doctailieu.com.

doctailieu.com
Tải về
bài viết bạn đã xem
Back to top