Bạn muốn giải bài 2 trang 131 SGK Toán 9 tập 2 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết, không chỉ tham khảo cách làm hoặc đáp án mà bài viết này còn giúp bạn nắm vững lại các kiến thức Toán 9 để tự tin giải tốt các bài tập ôn tập cuối năm phần đại số.
Đề bài 2 trang 131 SGK Toán 9 tập 2
Rút gọn các biểu thức:
\(M = \sqrt {3 - 2\sqrt 2 } - \sqrt {6 + 4\sqrt 2 } \)
\(N = \sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } \)
» Bài tập trước: Bài 1 trang 131 SGK Toán 9 tập 2
Giải bài 2 trang 131 SGK Toán 9 tập 2
Hướng dẫn cách làm
Sử dụng công thức hằng đẳng thức: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\;\;khi\;\;\;A \ge 0\\- A\;\;\;khi\;\;A < 0\end{array} \right..\)
Đáp án chi tiết
Dưới đây là các cách giải bài 2 trang 131 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:
\(\eqalign{& M = \sqrt {3 - 2\sqrt 2 } - \sqrt {6 + 4\sqrt 2 } \cr & =\sqrt {{{\left( {\sqrt 2 } \right)}^2} - 2\sqrt 2 .1 + {1^2}} \cr&\;\;\;\;- \sqrt {{{\left( 2 \right)}^2} + 2.2.\sqrt 2 + {{\left( {\sqrt 2 } \right)}^2}} \cr & = \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} - \sqrt {{{\left( {2 + \sqrt 2 } \right)}^2}} \cr & = \left| {\sqrt 2 - 1} \right| - \left| {2 + \sqrt 2 } \right| \cr & = \sqrt 2 - 1 - 2 - \sqrt 2 = - 3 .\cr} \)
\(\eqalign{ & N = \sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } \cr & \Rightarrow {N^2} = {\left( {\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } } \right)^2} \cr & = 2 + \sqrt 3 + 2\sqrt {\left( {2 + \sqrt 3 } \right)\left( {2 - \sqrt 3 } \right)} + 2 - \sqrt 3 \cr & = 4 + 2\sqrt {4 - 3} = 6. \cr} \)
Vì \(N > 0\) nên \(N^2 = 6 ⇒ N = \sqrt6.\)
Vậy \(N = \sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } = \sqrt 6. \)
» Bài tiếp theo: Bài 3 trang 132 SGK Toán 9 tập 2
Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 2 trang 131 SGK Toán 9 tập 2. Mong rằng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học này.