Mục lục bài học
Giải Toán Đại Số 10

Chứng minh Bất đẳng thức Bunhiacopxki kèm ví dụ minh họa

Bất đẳng thức Bunhiacopxki, các dạng BĐT Bunhiacopxki trong chương trình học, chứng minh và nhận dạng sai lầm hay gặp khi áp dụng Bunhiacopxki vào các bài toán

Cùng Đọc tài liệu điểm danh những kiến thức cơ bản đối với BĐT Bunhiacopxki em nhé:

Kiến thức cơ bản

Bất đẳng thức Bunhiacopxki dạng thông thường

1. Dạng bài toán áp dụng bất đẳng thức này khá thông dụng trong chương trình học của các em:

(a² + b²)(c² + d²) ≥ (ac + bd)²

Chứng minh: 

(a² + b²)(c² + d²) ≥ (ac + bd)² 

↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² 

↔ (ad)² + (bc)² ≥ 2abcd ↔ (ad)² - 2abcd + (bc)² ≥ 0 ↔ (ad - bc)² ≥ 0 => luôn đúng

Dấu " = " xảy ra khi \({\displaystyle {\frac {a}{c}}={\frac {b}{d}}}\)

2. Với a,b,x,y là các số thực, ta có các bất đẳng thức sau:

\((ax + by)^2 \le (a^2 + b^2)(x^2 + y^2)\)

Dấu bằng xảy ra khi \({\displaystyle {\frac {x}{a}}={\frac {y}{b}}}\)

\(\dfrac{(a+b)^2}{x+y} \le \dfrac{a^2}{x}+\dfrac{b^2}{y}\)

(với x,y > 0, a,b là số thực)

3. Với bộ 3 số a, b, c và x, y, z ta có:

\((ax+by+cz)^2 \le (a^2 +b^2+c^2)(x^2+y^2+z^2)\)

Dấu bằng xảy ra khi  \(\dfrac{x}{a}= \dfrac{y}{b}= \dfrac{z}{c}\)

\(\dfrac{(a+b+c)^2}{x+y+z} \le \dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\)

 (x,y,z >0, a,b là số thực)

Bất đẳng thức Bunhiacopxki tổng hợp

Dạng 1

Cho hai dãy số thực \(​​​​a_{1},a_{2},…a_{n}\) và  \(b_{1},b_{2},…b_{n}\) ta có:

\((a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n})^{2}\leq (a_{1}^{2}+a_{2}^{2}…+a_{n}^{2})(b_{1}^{2}+b_{2}^{2}…+b_{n}^{2})\)

Dấu "=" xảy ra khi và chỉ khi \(\displaystyle \frac{{{a}_{1}}}{{{b}_{1}}}=\frac{{{a}_{2}}}{{{b}_{2}}}=…=\frac{{{a}_{n}}}{{{b}_{n}}}\)với quy ước nếu mẫu bằng 0 thì tử phải bằng 0

Đây là công thức do ba nhà toán học độc lập Cauchy – Bunhiacopxki – Schwarz phát hiện và đề xuất.

Chứng minh: 

Đặt \(A=a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2},B=b_{1}^{2}+b_{2}^{2}+...+b_{n}^{2},C=a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n}\)

=> Chúng ta cần phải chứng minh được A.B > C²

Nếu A = 0 thì \(​​​​a_{1}=a_{2}=…a_{n}\), bất đẳng thức được chứng minh. Cũng vậy nếu B = 0. Do đó ta chỉ cần xét trường hợp A và B khác 0

Với mọi x ta có:

\((a_{1}x-b_{1})^{2}\geq 0\Rightarrow a_{1}^{2}x^{2}-2a_{1}b_{1}x+b_{1}^{2}\geq 0 \)

\((a_{2}x-b_{2})^{2}\geq 0\Rightarrow a_{2}^{2}x^{2}-2a_{2}b_{2}x+b_{2}^{2}\geq 0 \)

.........

\((a_{n}x-b_{n})^{2}\geq 0\Rightarrow a_{n}^{2}x^{2}-2a_{n}b_{n}x+b_{n}^{2}\geq 0\)

Cộng từng vế của các bất đẳng thức trên được:

\((a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2})x^{2}-2(a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n})x+(b_{1}^{2}+b_{2}^{2}+...+b_{n}^{2})\geq 0\)

tức là Ax² - 2Cx + B ≥ 0 (1)

Vì (1) đúng với mọi x nên thay \(x=\frac{C}{A}\)  vào (1) ta được: 

\(A.\frac{C^{2}}{A^{2}}-2.\frac{C^{2}}{A}+B\geq 0\Rightarrow B-\frac{C^{2}}{A}\geq 0\Rightarrow AB-C^{2}\geq 0\Rightarrow AB\geq C^{2}\)

Xảy ra đẳng thức khi và chỉ khi

\(a_{1}x=b_{1},a_{2}x=b_{2},...,a_{n}x=b_{n}\)

tức là \(\displaystyle \frac{{{a}_{1}}}{{{b}_{1}}}=\frac{{{a}_{2}}}{{{b}_{2}}}=…=\frac{{{a}_{n}}}{{{b}_{n}}}\) với quy ước rằng nếu mẫu bằng 0 thì tử phải bằng 0 => đpcm

Một số dạng Bất đẳng thức Bunhiacopxki khác mà em có thể tham khảo:

Dạng 2:

\(\displaystyle \sqrt{\left( a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+…+b_{n}^{2} \right)}\ge \left| {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+…+{{a}_{n}}{{b}_{n}} \right|\)

Dấu "=" xảy ra khi và chỉ khi  \(\displaystyle \frac{{{a}_{1}}}{{{b}_{1}}}=\frac{{{a}_{2}}}{{{b}_{2}}}=…=\frac{{{a}_{n}}}{{{b}_{n}}}\)

Dạng 3:

\(\displaystyle \sqrt{\left( a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+…+b_{n}^{2} \right)}\ge {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+…+{{a}_{n}}{{b}_{n}}\)

Dấu "=" xảy ra khi và chỉ khi  \(\displaystyle \frac{{{a}_{1}}}{{{b}_{1}}}=\frac{{{a}_{2}}}{{{b}_{2}}}=…=\frac{{{a}_{n}}}{{{b}_{n}}} ≥ 0\)

Dạng 4: 

Cho hai dãy số tùy ý \(​​​​a_{1},a_{2},…, a_{n}\) và  \(x_{1},x_{2},… , x_{n}\) ta có: với \(x_{1},x_{2},… , x_{n}\)> 0

Khi đó ta có: 

\(\displaystyle \frac{a_{1}^{2}}{{{x}_{1}}}+\frac{a_{2}^{2}}{{{x}_{2}}}+…+\frac{a_{n}^{2}}{{{x}_{n}}}\ge \frac{{{\left( {{a}_{1}}+{{a}_{2}}+…+{{a}_{n}} \right)}^{2}}}{{{x}_{1}}+{{x}_{2}}+…+{{x}_{n}}}\)

Dấu bằng xảy ra khi:  \(\displaystyle \frac{{{a}_{1}}}{{{x}_{1}}}=\frac{{{a}_{2}}}{{{x}_{2}}}=…=\frac{{{a}_{n}}}{{{x}_{n}}}\ge 0\)

Lưu ý khi biến đổi bất đẳng thức Bunhiacopxki

Với bất đẳng thức ba biến a, b, c ta có thể sử dụng một số phép biến đổi như:

biến đổi bất đẳng thức Bunhiacopxki 1

Với một số bất đẳng thức có giả thiết là ta có thể đổi biến:

biến đổi bất đẳng thức Bunhiacopxki 2

Sai lầm thường gặp khi áp dụng Bunhiacopxki

Cho a là số thức dương thỏa mãn a ≥ 2. Tìm giá trị nhỏ nhất của biểu thức:

\(\displaystyle A={{a}^{2}}+\frac{1}{{{a}^{2}}}\)

Hướng dẫn:

sai lầm hay gặp phải khi áp dụng bất đẳng thức Bunhiacopxki

Ví dụ minh họa 

Tham khảo 2 bài toán áp dụng Bất đẳng thức Bunhiacopxki trong các bài toán thường gặp:

Bài toán 1: Cho a, b, là các số thực dương thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức:

\(\displaystyle A=\sqrt{{{a}^{2}}+\frac{1}{{{a}^{2}}}}+\sqrt{{{b}^{2}}+\frac{1}{{{b}^{2}}}}\)

Bài làm:

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\displaystyle \left\{ \begin{array}{l}\sqrt{{{a}^{2}}+\frac{1}{{{a}^{2}}}}=\frac{1}{\sqrt{17}}.\sqrt{\left( {{a}^{2}}+\frac{1}{{{a}^{2}}} \right).\left( {{4}^{2}}+{{1}^{2}} \right)}\ge \frac{1}{\sqrt{17}}\left( 4a+\frac{1}{a} \right)\\\sqrt{{{b}^{2}}+\frac{1}{{{b}^{2}}}}=\frac{1}{\sqrt{17}}.\sqrt{\left( {{b}^{2}}+\frac{1}{{{b}^{2}}} \right).\left( {{4}^{2}}+{{1}^{2}} \right)}\ge \frac{1}{\sqrt{17}}\left( 4b+\frac{1}{b} \right)\end{array} \right.\)

bài toán áp dụng bất đẳng thức Bunhiacopxki số 1

Bài toán 2: Cho a, b, c là các số thực dương bất kỳ. Chứng minh rằng:

\(\displaystyle \sqrt{\frac{a+b}{a+b+c}}+\sqrt{\frac{b+c}{a+b+c}}+\sqrt{\frac{c+a}{a+b+c}}\le \sqrt{6}\)


Bài làm

Áp dụng BĐT Bunhiacopxki ta được

bài toán áp dụng bất đẳng thức Bunhiacopxki số 2

doctailieu.com
Back to top
Fanpage Đọc tài liệu