Rút gọn phân thức: Lý thuyết và các dạng bài cơ bản

Tham khảo lý thuyết rút gọn phân thức với phần tổng hợp kiến thức cơ bản, công thức cần nắm và những dạng toán cơ bản thường gặp ở phần kiến thức này.

Nếu đang tìm kiếm một tài liệu học tập về phần phân thức, các em hãy tham khảo ngay tài liệu dưới đây với hệ thống lý thuyết rút gọn phân thức cùng các dạng bài tập thường gặp, giúp các em nắm được trọn vẹn phần kiến thức này. Các thầy cô cũng có thể sử dụng bài tổng hợp này như một tài liệu hữu ích phục vụ quá trình dạy học của mình.

Cùng tham khảo nhé!

Rút gọn phân thức: Lý thuyết và các dạng bài cơ bản

I. Lý thuyết Rút gọn phân thức

- Cách biến đổi phân thức thành phân thức đơn giản hơn và bằng phân thức đã cho gọi là rút gọn phân thức.

Quy tắc rút gọn phân thức:

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung (nếu có).

Chú ý:

Nhiều khi ta cần đổi dấu ở tử hoặc mẫu để nhận ra nhân tử chung của tử và mẫu bằng việc sử dụng tính chất: \(A =  - \left( { - A} \right).\)

Ví dụ:

\(\dfrac{{20{x^2} - 45}}{{{{\left( {2x - 3} \right)}^2}}} = \dfrac{{5\left( {4{x^2} - 9} \right)}}{{{{\left( {2x - 3} \right)}^2}}} = \dfrac{{5\left( {2x - 3} \right)\left( {2x + 3} \right)}}{{{{\left( {2x - 3} \right)}^2}}} = \dfrac{{5\left( {2x + 3} \right)}}{{2x - 3}}.\)

2. Các dạng toán thường gặp về rút gọn phân thức

 Dạng 1: Rút gọn phân thức

Phương pháp:

Để rút dọn phân thức ta tiến hành các bước sau:

Bước 1:  Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

Bước 2:  Chia cả tử và mẫu cho nhân tử chung (nếu có).

Dạng 2: Tính giá trị của phân thức tại giá trị cho trước của biến.

Phương pháp:

Bước 1: Rút gọn phân thức (nếu cần)

Bước 2: Thay giá trị của biến vào phân thức rồi thực hiện phép tính.

Dạng 3: Tìm giá trị nguyên của biến để phân thức đạt giá trị nguyên.

Phương pháp:

Bước 1: Tìm điều kiện xác định

Bước 2: Ta biến đổi để đưa phân thức về dạng \(m + \dfrac{n}{B}\)  (nếu có thể).

Bước 3: Phân thức \(\dfrac{A}{B}\)  đạt giá trị nguyên khi \(A \vdots B\) , từ đó tìm được \(x\)

Bước 4: So sánh với điều kiện để kết luận các giá trị thỏa mãn.

Dạng 4: Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức.

Phương pháp:

Ta biến đổi phân thức để sử dụng được các kiến thức sau:

\({\left( {A + B} \right)^2} + m \ge m\,\,;\) \(m - {\left( {A + B} \right)^2} \le m\) với mọi \(A,B\) . Dấu “=” xảy ra khi \(A =  - B.\)

\({\left( {A - B} \right)^2} + m \ge m\,\,;\) \(m - {\left( {A - B} \right)^2} \le m\) với mọi \(A,B\) . Dấu “=” xảy ra khi \(A = B.\)

********************

Trên đây là lý thuyết Rút gọn phân thức bao gồm các kiến thức cần nắm và những dạng bài liên quan. Hy vọng đây sẽ là tài liệu hữu ích phục vụ việc học tập của các em. Ngoài ra, các em hãy truy cập doctailieu.com để tham khảo thêm nhiều tài liệu học Toán lớp 8 phong phú khác mà chúng tôi đã sưu tầm và tổng hợp nhé. Chúc các em luôn học tốt và đạt kết quả cao!

doctailieu.com
Back to top