Bài 52 trang 60 SGK Toán 9 tập 2

Xuất bản: 12/11/2019 - Tác giả: Giangdh

Bài 52 trang 60 SGK Toán 9 tập 2 được hướng dẫn chi tiết giúp bạn giải bài tập trang 60 sách giáo khoa Toán lớp 9 tập 2 và ôn tập các kiến thức đã học.

Đáp án bài 52 trang 60 SGK Toán 9 tập 2 được biên soạn bởi Đọc Tài Liệu nhằm mục đích tham khảo phương pháp làm bài. Tài liệu cũng giúp các bạn ôn tập nội dung kiến thức trong Toán 9 chương 4 phần đại số.

Đề bài 52 trang 60 SGK Toán 9 tập 2

Khoảng cách giữa hai bên sông A và B là 30 km. Một canô đi từ bến A đến bến B, nghỉ 40 phút ở bến B rồi quay lại bến A. Kể từ lúc khởi hành đến khi về tới bến A hết tất cả 6 giờ. Hãy tìm vận tốc của canô trong nước yên lặng, biết rằng vận tốc của nước chảy là 3 km/h.

» Bài tập trước: Bài 51 trang 59 SGK Toán 9 tập 2

Giải bài 52 trang 60 SGK Toán 9 tập 2

Hướng dẫn cách làm

Các bước giải bài toán bằng cách lập phương trình

Bước 1: Lập phương trình

1) Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)

2) Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết

3) Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.

Chú ý: Đối với chuyển động của ca nô thì

\({v_{xd}} = {v_t} + {v_n};\,{v_{nd}} = {v_t} - {v_n}\)

Trong đó \({v_{xd}}\) là vận tốc ca nô khi xuôi dòng; \({v_{nd}}\) là vận tốc ca nô khi ngược dòng

\({v_t}\) là vận tốc thực của ca nô khi nước yên lặng; \({v_n}\) là vận tốc chảy của dòng nước

Đáp án chi tiết

Dưới đây là các cách giải bài 52 trang 60 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

Gọi vận tốc thực của canô (khi nước yên lặng) là \(x\) (km/h) , nên vận tốc khi đi xuôi dòng là: \(x + 3\) (km/h) và vận tốc khi ngược dòng là: \(x - 3\) (km/h), \(x > 3\).

Thời gian xuôi dòng là: \(\dfrac{30}{x + 3}\) (giờ)

Thời gian ngược dòng là: \(\dfrac{30}{x - 3}\) (giờ)

Nghỉ lại \(40\) phút hay \(\dfrac{2}{3}\) giờ ở B.

Theo đầu bài kể từ khi khời hành đến khi về tới bến A hết tất cả \(6\) giờ nên ta có phương trình: \(\dfrac{30}{x+ 3}+ \dfrac{30}{x- 3}+ \dfrac{2}{3} = 6\)

\(\begin{array}{l}  \Leftrightarrow \dfrac{{30}}{{x + 3}} + \dfrac{{30}}{{x - 3}} = \dfrac{{16}}{3}\\  \Rightarrow 30.3\left( {x - 3} \right) + 30.3.\left( {x + 3} \right) = 16.\left( {x - 3} \right)\left( {x + 3} \right)\\  \Leftrightarrow 90x - 270 + 90x + 270 = 16\left( {{x^2} - 9} \right)\\  \Leftrightarrow 16{x^2} - 180x - 144 = 0\\  \Leftrightarrow 4{x^2} - 45x - 36 = 0 \end{array}\)

\(\Delta = 2025 + 576 = 2601 >0, \sqrt{\Delta} = 51\)

Suy ra \({x_1} = 12, {x_2} = -\dfrac{3}{4}\) (loại)

Vậy vận tốc của canô trong nước yên lặng là \(12\) km/h.

» Bài tiếp theo: Bài 53 trang 60 SGK Toán 9 tập 2

Nội dung trên đã giúp bạn nắm được cách làm bài 52 trang 60 SGK Toán 9 tập 2. Hy vọng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ giúp các bạn hoàn thành bài tập chính xác và học tốt môn học này.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM