Đáp án đề thi môn Toán vào lớp 10 THPT chuyên KHTN năm 2018

Đọc Tài Liệu cập nhật đề thi chính thức và hướng dẫn gợi ý tham khảo môn Toán tuyển sinh vào lớp 10 năm học 2018 - 2019 của trường chuyên Khoa học Tự nhiên - ĐH Quốc Gia Hà Nội.

Đề thi chính thức:

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐH KHOA HỌC TỰ NHIÊN
ĐỀ THI TUYỂN SINH VÀO LỚP 10
TRƯỜNG THPT CHUYÊN KHTN NĂM 2018
Đề chính thức  

MÔN THI: TOÁN (cho tất cả các thí sinh)
Thời gian làm bài: 120 phút (không kể thời gian phát đề)

Câu I.

1, Giải phương trình

\(x^2 - x + 2\sqrt {x^3+1} = 2\sqrt{x+1}\)

2, Giải hệ phương trình

\(\left\{ {_{x^2 + 2y^3 + 2xy = 4+x}^{xy + y^2 = 1+y}} \right.\)

Câu II.

(1) Tìm tất cả các cặp số nguyên \((x;y)\)  thỏa mãn

\((x+y)(3x +2y)^2=2x+y-1\)

2) Với a, b là các số thực dương thỏa mãn \(\sqrt {a+2b} = 2 + \sqrt {b\over 3}\) tìm giá trị nhỏ nhất của biểu thức

\(M = {a\over{\sqrt {a+2b}}} + {b\over {\sqrt{b+2a}}}\)

Câu III. Cho tam giác ABC có đường tròn nội tiếp (1) tiếp xúc với các cạnh BC, CA, AB lần lượt tại các điểm D, E, F. Gọi K là hình chiếu vuông góc của B trên đường thẳng DE, M là trung điểm của đoạn thẳng DF.
1) Chứng minh rằng hai tam giác BKM DEF đồng dạng.

2) Gọi L là hình chiếu vuông góc của C trên đường thẳng DF, N là trung điểm của đoạn thẳng DE. Chứng minh rằng hai đường thẳng MK và NL song song

3) Gọi M, N lần lượt là trung điểm của các đoạn thẳng KL, ID. Chứng minh rằng đường thăng JX vuông góc với đường thẳng EF.

Câu IV. Trên mặt phẳng cho hai điểm P, Q phân biệt. Xét 10 đường thẳng nằm trong mặt phẳng trên thỏa mãn các tính chất sau:
i) không có hai đường thẳng nào song song hoặc trùng nhau;

li) mỗi đường thẳng đi qua P hoặc Q, không có đường thằng nào đi qua cả PQ.
Hội 10 đường thẳng trên có thể chia mặt phẳng thành tối đa bao nhiêu miền? Hãy giải thích.
 

Đáp án tham khảo:

Đáp án đề thi môn Toán vào lớp 10 THPT chuyên KHTN năm 2018
 

Nếu không hiển thị đầy đủ đáp án, bạn hãy click vào link dưới đây:

https://doctailieu.com/dap-an-de-thi-mon-toan-vao-lop-10-thpt-chuyen-khtn-nam-2018

Back to top
Fanpage Đọc tài liệu