Trang 80 SGK Toán 7 tập 1 Chân trời sáng tạo

Xuất bản: 24/08/2022 - Cập nhật: 26/08/2022 - Tác giả:

Giải bài tập 1, 2, 3, 4, 5 trang 80 SGK Toán 7 tập 1 Chân trời sáng tạo chi tiết hướng dẫn và đáp án giúp các em học tốt hơn

Bài 1 trang 80 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

Trong Hình 15, cho biết a // b, Tìm số đo các góc đỉnh A và B

Bai 1 trang 80 sgk toan 7 tap 1 chan troi sang tao

Bài giải

Ta có: \(\widehat {{A_3}} = \widehat {{A_1}}\) ( 2 góc đối đỉnh), mà \(\widehat {{A_3}} = 32^\circ \) nên \(\widehat {{A_1}} = 32^\circ \)

\(\widehat {{A_3}} + \widehat {{A_4}} = 180^\circ \)( 2 góc kề bù) nên \(32^\circ  + \widehat {{A_4}} = 180^\circ  \Rightarrow \widehat {{A_4}} = 180^\circ  - 32^\circ  = 148^\circ \)

\(\widehat {{A_2}} = \widehat {{A_4}}\)( 2 góc đối đỉnh), mà \(\widehat {{A_4}} = 148^\circ \) nên \(\widehat {{A_2}} = 148^\circ \)

Vì a // b nên:

+)  \(\widehat {{A_3}} = \widehat {{B_1}}\) ( 2 góc so le trong), mà \(\widehat {{A_3}} = 32^\circ \) nên \(\widehat {{B_1}} = 32^\circ \)

+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{A_4}} = 148^\circ \) nên \(\widehat {{B_2}} = 148^\circ \)

+) \(\widehat {{A_3}} = \widehat {{B_3}}\) ( 2 góc đồng vị), mà \(\widehat {{A_3}} = 32^\circ \) nên \(\widehat {{B_3}} = 32^\circ \)

+) \(\widehat {{A_4}} = \widehat {{B_4}}\)( 2 góc đồng vị), mà \(\widehat {{A_4}} = 148^\circ \) nên \(\widehat {{B_4}} = 148^\circ \)

Chú ý:

Trong các bài tập tìm số đo góc, ta có thể sử dụng linh hoạt các vị trí đối đỉnh, so le trong, đồng vị, kề bù

Bài 2 trang 80 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

Vẽ một đường thẳng cắt hai đường thẳng sao cho trong các góc tạo thành có một cặp góc so le trong bằng nhau. Đặt tên cho các góc đó.

a) Vì sao cặp góc so le trong còn lại cũng bằng nhau?

b) Vì sao các cặp góc đồng vị cũng bằng nhau?

Bài giải

Bai 2 trang 80 sgk toan 7 tap 1 chan troi sang tao

Vì đường thẳng c cắt hai đường thẳng a và b tạo thành một cặp góc so le trong ( góc A4 và B3) bằng nhau nên a // b ( Dấu hiệu nhận biết 2 đường thẳng song song)

Vì a // b nên theo tính chất của 2 đường thẳng song song:

a) Các so le trong bằng nhau

b) Các góc đồng vị bằng nhau

Bài 3 trang 80 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

Hãy nói các cách để kiểm tra hai đường thẳng song song mà em biết

Bài giải

Cách 1: Kiểm tra 2 góc ở vị trí so le trong có bằng nhau không. Nếu bằng nhau thì 2 đường thẳng song song.

Cách 2: Kiểm tra 2 góc ở vị trí đồng vị có bằng nhau không. Nếu bằng nhau thì 2 đường thẳng song song.

Cách 3: Kiểm tra 2 đường thẳng có cùng song song với 1 đường thẳng không. Nếu có thì 2 đường thẳng song song.

Cách 4: Kiểm tra 2 đường thẳng có cùng vuông góc với 1 đường thẳng không. Nếu có thì 2 đường thẳng song song.

Bài 4 trang 80 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

Cho Hình 16, biết a // b.

a) Chỉ ra góc ở vị trí so le trong, đồng vị với góc \(\widehat {{B_2}}\)

b) Tính số đo các góc \(\widehat {{A_4}},\widehat {{A_2}},\widehat {{B_3}}\)

c) Tính số đo các góc \(\widehat {{B_1}},\widehat {{A_1}}\).

Bài giải

a) Góc ở vị trí so le trong với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_4}}\)

Góc ở vị trí đồng vị với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_2}}\)

b) Vì a // b nên:

+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)

+) \(\widehat {{A_2}} = \widehat {{B_2}}\) ( 2 góc đồng vị), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_2}} = 40^\circ \)

Ta có: \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_3}} = 180^\circ  \Rightarrow \widehat {{B_3}} = 180^\circ  - 40^\circ  = 140^\circ \)

c) Ta có: \(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_1}} = 180^\circ  \Rightarrow \widehat {{B_1}} = 180^\circ  - 40^\circ  = 140^\circ \)

Vì a // b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) (2 góc đồng vị) nên \(\widehat {{A_1}} = 140^\circ \)

Bài 5 trang 80 sgk toán 7 tập 1 chân trời sáng tạo

Câu hỏi

Cho Hình 17, biết a // b.

Tính số đo các góc \(\widehat {{B_1}}\)\(\widehat {{D_1}}\)

Bài giải

Bai 5 trang 80 sgk toan 7 tap 1 chan troi sang tao

Vì a // b nên

+) \(\widehat {{C_1}} = \widehat {{D_2}}\) ( 2 góc đồng vị), mà \(\widehat {{C_1}} = 90^\circ \) nên \(\widehat {{D_2}} = 90^\circ \). Do đó, b\( \bot \) CD nên \(\widehat {{D_1}}\)= 90\(^\circ \)

+) \(\widehat {{A_1}} = \widehat {{B_2}}\) ( 2 góc so le trong) nên \(\widehat {{B_2}} = 70^\circ \)

Ta có: \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \)( 2 góc kề bù) nên \(\widehat {{B_1}} + 70^\circ  = 180^\circ  \Rightarrow \widehat {{B_1}} = 180^\circ  - 70^\circ  = 110^\circ \)

Bài tiếp theo: Trang 81 SGK Toán 7 tập 1 Chân trời sáng tạo

Xem thêm:

Trên đây là chi tiết hướng dẫn Giải bài tập Trang 80 SGK Toán 7 tập 1 Chân trời sáng tạo được Đọc Tài Liệu biên soạn với mong muốn hỗ trợ các em học sinh học tốt hơn môn Toán lớp 7

Hướng dẫn giải Toán 7 Chân trời sáng tạo bởi Đọc Tài Liệu

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

CÓ THỂ BẠN QUAN TÂM