Trang 46 SGK Toán 7 tập 2 Kết nối tri thức

Xuất bản: 07/09/2022 - Cập nhật: 08/09/2022 - Tác giả:

Giải bài tập 42, 43, 44, 45, 46 trang 46 SGK Toán 7 tập 2 Kết nối tri thức chi tiết hướng dẫn và đáp án giúp các em học tốt hơn

Bài 7.42 trang 46 sgk toán 7 tập 2 Kết nối tri thức

Câu hỏi

Một hãng taxi quy định giá cước như sau: 0,5 km đầu tiên giá 8 000 đồng; tiếp theo cứ mỗi kilomet giá 11 000 đồng. Giả sử một người thuê xe đi x (km)

a) Chứng tỏ rằng biểu thức biểu thị số tiền mà người đó phải trả là một đa thức. Tìm bậc, hệ số cao nhất và hệ số tự do của đa thức đó.

b) Giá trị của đa thức tại x = 9 nói lên điều gì?

Bài giải

a) 0,5 km, người đó phải trả: 8 000 (đồng)

Quãng đường còn lại người đó phải đi là: x – 0,5 (km)

Trong x – 0,5 km đó, người đó phải trả: (x – 0,5). 11 000 ( đồng)

Đa thức biểu thị số tiền mà người đó phải trả là:

T(x) = 8 000 + (x – 0,5). 11 000

= 8 000 + x . 11 000 – 0,5 . 11 000

= 8 000 + 11 000 . x – 5 500

= 11 000 .x + 2 500

Bậc của đa thức là: 1

Hệ số cao nhất: 11 000

Hệ số tự do: 2 500

b) Thay x = 9 vào đa thức T(x), ta được:

T(9) = 11 000 . 9 + 2 500 = 101 500

Giá trị này nói lên số tiền mà người đó phải trả khi đi 9 km là 101 500 đồng

Bài 7.43 trang 46 sgk toán 7 tập 2 Kết nối tri thức

Câu hỏi

Cho đa thức bậc hai F(x) = ax2 + bx + c, trong đó, a,b và c là những số với a \( \ne \) 0

a) Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của F(x)

b) Áp dụng, hãy tìm một nghiệm của đa thức bậc hai 2x2 – 5x + 3

Bài giải

a) Thay x = 1 vào đa thức F(x), ta có:

F(1) = a.12 + b.1 + c = a+ b + c

Mà a + b + c = 0

Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)

b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0

Do đó, đa thức có 1 nghiệm là x = 1

Bài 7.44 trang 46 sgk toán 7 tập 2 Kết nối tri thức

Câu hỏi

Cho đa thức A = x4 + x3 – 2x – 2

a) Tìm đa thức B sao cho A + B = x3 + 3x + 1

b) Tìm đa thức C sao cho A – C = x5

c) Tìm đa thức D biết rằng D = (2x3 – 3) . A

d) Tìm đa thức P sao cho A = (x+1) . P

e) Có hay không một đa thức Q sao cho A = (x2 + 1) . Q?

Bài giải

a) Ta có:

B = (A + B) – A

= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)

= x3 + 3x + 1 – x4 - x3 + 2x + 2

= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)

= – x4 + 5x + 3

b) C = (A – C) – A

= x5 – (x4 + x3 – 2x – 2)

= x5 – x4 -  x3 + 2x + 2)

c) D = (2x3 – 3) . A

= (2x3 – 3) . (x4 + x3 – 2x – 2)

= 2x3 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)

= 2x3 . x4 + 2x3 . x3 + 2x3 . (-2x) + 2x3 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)

= 2x7 + 2x6 – 4x4 – 4x3 – 3x4 – 3x3 + 6x + 6

= 2x7 + 2x6 + (-4x4 – 3x4) + (-4x3 – 3x3) + 6x + 6

= 2x7 + 2x6 – 7x4 – 7x3 + 6x + 6

d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)

Bai 7.44 trang 46 sgk toan 7 tap 2 Ket noi tri thuc cau a

Vậy P = x3 - 2

e) Q = A : (x2 + 1)

Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn

Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)

Bai 7.44 trang 46 sgk toan 7 tap 2 Ket noi tri thuc cau b

Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn

Bài 7.45 trang 46 sgk toán 7 tập 2 Kết nối tri thức

Câu hỏi

Cho đa thức P(x). Giải thích tại sao nếu có đa thức Q(x) sao cho P(x) = (x – 3) . Q(x) (tức là P(x) chia hết cho x – 3) thì x = 3 là một nghiệm của P(x)

Bài giải

Vì tại x = 3 thì  P(x) = (3 – 3) . Q(x) = 0. Q(x) = 0 nên x = 3 là một nghiệm của đa thức P(x)

Bài 7.46 trang 46 sgk toán 7 tập 2 Kết nối tri thức

Câu hỏi

Hai bạn Tròn và Vuông tranh luận với nhau như sau:

Bai 7.46 trang 46 sgk toan 7 tap 2 Ket noi tri thuc

Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.

Bài giải

Tròn đúng, Vuông sai vì tổng của các đa thức là một đa thức có bậc không lớn hơn bậc của các đa thức thành phần

Đa thức M(x) = x3 + 1 có thể viết được thành tổng của hai đa thức bậc 4 có hệ số cao nhất là 2 số đối nhau.

Ví dụ:

x3 + 1 = (x4 + 1) + (-x4 + x3)

Xem thêm:

Trên đây là chi tiết hướng dẫn Giải bài tập Trang 46 SGK Toán 7 tập 2 Kết nối tri thức được Đọc Tài Liệu biên soạn với mong muốn hỗ trợ các em học sinh học tốt hơn môn Toán lớp 7

Hướng dẫn giải Toán 7 Kết nối tri thức bởi Đọc Tài Liệu

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

CÓ THỂ BẠN QUAN TÂM