Bài 1 trang 33 sgk toán 7 tập 1 chân trời sáng tạo
Câu hỏi
a) Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân:
\(\frac{{15}}{8};\,\,\,\frac{{ - 99}}{{20}};\,\,\,\frac{{40}}{9};\,\,\, - \frac{{44}}{7}\)
b) Trong các số thập phân vừa tính được, hãy chỉ ra các số thập phân vô hạn tuần hoàn.
Bài giải
a)\(\frac{{15}}{8} = 1,875;\,\,\,\,\,\,\,\frac{{ - 99}}{{20}} = - 4,95;\,\,\,\,\,\,\frac{{40}}{9} = 4,\left( 4 \right);\,\,\, - \frac{{44}}{7} = - 6,(285714)\)
b) Trong các số thập phân trên, số thập phân 4,(4) và -6,(285714) là các số thập phân vô hạn tuần hoàn với chu kì lần lượt là 4 và 285714
Bài 2 trang 33 sgk toán 7 tập 1 chân trời sáng tạo
Câu hỏi
Chọn phát biểu đúng trong các phát biểu sau:
\(a)\sqrt 2 \in I;\,\,\,\,\,b)\sqrt 9 \in I;\,\,\,\,c)\,\pi \in I;\,\,\,\,\,d)\sqrt 4 \in \mathbb{Q}\)
Bài giải
\(a)\sqrt 2 \approx 1,1412... \in I;\,\,\,\,\,b)\sqrt 9 = 3 \notin I;\,\,\,\,c)\,\pi \approx 3,141... \in I;\,\,\,\,\,d)\sqrt 4 = 2 \in \mathbb{Q}\)
Vậy các phát biểu a,c,d đúng.
Bài 3 trang 33 sgk toán 7 tập 1 chân trời sáng tạo
Câu hỏi
Tính:
\(a)\sqrt {64} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b)\sqrt {{{25}^2}} ;\,\,\,\,\,\,\,\,\,\,\,c)\sqrt {{{\left( { - 5} \right)}^2}} .\)
Bài giải
\(a)\sqrt {64} \, = \sqrt {{8^2}} = 8\,\,\,\,\,\,b)\sqrt {{{25}^2}} = 25;\,\,\,\,\,\,c)\sqrt {{{\left( { - 5} \right)}^2}} = 5\).
Bài 3 trang 33 sgk toán 7 tập 1 chân trời sáng tạo
Câu hỏi
Hãy thay dấu ? bằng các số thích hợp.
Bài giải
\(n\) | 121 | 144 | 169 | 21316 |
---|---|---|---|---|
\(\sqrt n \) | 11 | 12 | 13 | 146 |
Bài tiếp theo: Trang 34 SGK Toán 7 tập 1 Chân trời sáng tạo
Xem thêm:
- Trang 38 SGK Toán 7 tập 1 Chân trời sáng tạo
- Trang 42 SGK Toán 7 tập 1 Chân trời sáng tạo
- Trang 45 SGK Toán 7 tập 1 Chân trời sáng tạo
Trên đây là chi tiết hướng dẫn Giải bài tập Trang 33 SGK Toán 7 tập 1 Chân trời sáng tạo được Đọc Tài Liệu biên soạn với mong muốn hỗ trợ các em học sinh học tốt hơn môn Toán lớp 7
Hướng dẫn giải Toán 7 Chân trời sáng tạo bởi Đọc Tài Liệu