Ta có $\sqrt{x-2} \cdot \sqrt{x+2}=\sqrt{x^{2}-4}$ với$x \geq 2$
Thay $x =\sqrt{29}( TMDK x \geq 2)$ vào biểu thức ta được:
$\sqrt{x^{2}-4}=\sqrt{(\sqrt{29})^{2}-4}=\sqrt{25}=5$
Giá trị biều thức sqrtx-2 cdot sqrtx+2 khi x=sqrt29 là?
Xuất bản: 19/11/2020 - Cập nhật: 19/11/2020 - Tác giả: Nguyễn Hưng
Câu Hỏi:
Giá trị biều thức $\sqrt{x-2} \cdot \sqrt{x+2}$ khi $x=\sqrt{29}$ là?
Câu hỏi trong đề: Trắc nghiệm bài liên hệ phép nhân, phép chia với phép khai phương
Đáp án và lời giải
đáp án đúng: B