Để giải bài 9 trang 135 SGK Toán 9 tập 2 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết về cách làm bài, Đọc Tài Liệu sẽ giúp các bạn đưa ra đáp án chính xác nhất và ôn tập các kiến thức trong chương trình học Toán 9 ôn tập cuối năm phần hình học.
Đề bài 9 trang 135 SGK Toán 9 tập 2
Cho tam giác \(ABC\) nội tiếp đường tròn \((O'\)) và ngoại tiếp đường tròn \((O)\). Tia \(AO\) cắt đường tròn \((O')\) tại \(D\). Ta có:
(A) \(CD = BD = O'D\) ; (B) \(AO = CO = OD\)
(C) \(CD = CO = BD\) ; (D) \(CD = OD = BD\)
Hãy chọn câu trả lời đúng.
» Bài tập trước: Bài 8 trang 134 SGK Toán 9 tập 2
Giải bài 9 trang 135 SGK Toán 9 tập 2
Hướng dẫn cách làm
+ Sử dụng hai góc nội tiếp bằng nhau chắn hai cung bằng nhau
+ Sử dụng tính chất tam giác cân
Đáp án chi tiết
Dưới đây là các cách giải bài 9 trang 135 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:
Vì \(AC\) và \(BC\) tiếp xúc với đường tròn \((O)\), \(AD\) đi qua \(O\) nên ta có:
\(\widehat {CA{\rm{D}}} = \widehat {BA{\rm{D}}} = \alpha\) (vì tâm đường tròn nội tiếp trong tam giác là giao điểm của ba đường phân giác trong tam giác)
\(⇒\) \(\overparen{CD}=\overparen{DB}\) \(⇒CD = DB\) (*)
Tương tự, \(CO\) là tia phân giác của góc \(C\) nên:
\(\widehat {AC{\rm{O}}} = \widehat {BCO} = \beta .\)
Mặt khác: \(\widehat {DCO} = \widehat {DCB} + \widehat {BCO} = \alpha + \beta \, \,(1)\) (do \(\widehat {BA{\rm{D}}} = \widehat {BC{\rm{D}}}\))
Ta có: \(\widehat {CO{\rm{D}}}\) là góc ngoài của \(∆ AOC\) nên
\(\widehat {CO{\rm{D}}} = \widehat {OAC} + \widehat {OC{\rm{A}}} = \beta + \alpha \, \, (2)\)
Từ (1) và (2) ta có: \(\widehat {OC{\rm{D}}} = \widehat {CO{\rm{D}}}\)
Vậy \(∆DOC\) cân tại \(D\) (2*)
Từ (*) và (2*) suy ra \(CD = OD = BD.\)
Chọn đáp án \(D\).
» Bài tiếp theo: Bài 10 trang 135 SGK Toán 9 tập 2
Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 9 trang 135 SGK Toán 9 tập 2. Mong rằng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học này.