Bài 8 trang 12 SGK Toán 9 tập 2

Xuất bản: 07/11/2019 - Cập nhật: 21/11/2019 - Tác giả: Giangdh

Bài 8 trang 12 SGK Toán 9 tập 2 được hướng dẫn chi tiết giúp bạn giải bài tập trang 12 sách giáo khoa Toán lớp 9 tập 2 và ôn tập các kiến thức đã học.

Bạn muốn giải bài 8 trang 12 SGK Toán 9 tập 2 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết, không chỉ tham khảo cách làm hoặc đáp án mà bài viết này còn giúp bạn nắm vững lại các kiến thức Toán 9 chương 3 phần đại số để tự tin giải tốt các bài tập khác về hệ hai phương trình bậc nhất hai ẩn.

Đề bài 8 trang 12 SGK Toán 9 tập 2

Cho các hệ phương trình sau:

\(a)\left\{ \matrix{ x = 2 \hfill \cr  2x - y = 3 \hfill \cr} \right.\)

\(b)\left\{ \matrix{ x + 3y = 2 \hfill \cr  2y = 4 \hfill \cr} \right.\)

Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.

» Bài tập trước: Bài 7 trang 12 SGK Toán 9 tập 2

Giải bài 8 trang 12 SGK Toán 9 tập 2

Hướng dẫn cách làm

+) Trong mỗi hệ phương trình, ta biến đổi phương trình có dạng \(ax+by=c\)  với \(b \ne 0)\) bằng cách rút biến \(y\) theo biến \(x\), ta được: \(y=-\dfrac{a}{b}x+\dfrac{c}{b}\).

+) Vẽ các đường thẳng biểu diễn tập nghiệm của hai phương trình trong hệ trên cùng một hệ trục tọa độ.

+) Xác định tọa độ giao điểm. Thay tọa độ vào hệ ban đầu. Nếu thỏa mãn thì tọa độ đó là nghiệm của hệ đã cho.

Đáp án chi tiết

Dưới đây là các cách giải bài 8 trang 12 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

a) Ta có

\(\left\{ \matrix{ x = 2 \hfill \cr  2x - y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 2\ (d) \hfill \cr  y = 2x - 3\ (d') \hfill \cr} \right.\)

Dự đoán: Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):x = 2\) song song với trục tung, còn một đồ thị là đường thẳng \((d'):y = 2x - 3\) cắt hai trục tọa độ.

+) Vẽ \((d)\): \(x = 2\) là đường thẳng đi qua điểm có tọa độ \((2;0)\) và song song với trục \(Oy\).

+) Vẽ \((d' )\): \(y =2x- 3\)

Cho \(x = 0 \Rightarrow y = -3\) ta được \(A(0; -3)\).

Cho \(y = 0 \Rightarrow x = \dfrac{3}{2}\) ta được \(B{\left(\dfrac{3 }{2};0 \right)}\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

Bài 8 trang 12 SGK Toán 9 tập 2 hình 1

Ta thấy hai đường thẳng cắt nhau tại \(N(2; 1)\).

Thay \(x = 2, y = 1\) vào hệ phương trình

\(\left\{ \begin{array}{l}x = 2\\2x - y = 3\end{array} \right.\) ta được

\(\left\{ \begin{array}{l}2 = 2\\2.2 - 1 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\3 = 3\end{array} \right.\)

(luôn đúng)

Vậy hệ phương trình có nghiệm \((2; 1)\).

\(b)\left\{ \matrix{ x + 3y = 2 \hfill \cr 2y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ y = - \dfrac{1}{3}x + \dfrac{2}{3}\, (d)\hfill \cr y = 2 \, (d') \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):y =  - \dfrac{1 }{3}x + \dfrac{2}{3}\) cắt hai trục tọa độ, còn một đồ thị là đường thẳng \((d'):y = 2\) song song với trục hoành.

+) Vẽ \(y=-\dfrac{1}{3}x+\dfrac{2}{3}\)

Cho \(x = 0 \Rightarrow y = \dfrac{2}{3}\) ta được \(A{\left(0;\dfrac{2}{3}\right)}\) .

Cho \(y = 0 \Rightarrow x = 2\) ta được \(B(2; 0)\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

+) Vẽ  \(y = 2\) là đường thẳng đi qua điểm có tọa độ \((0;2)\) trên trục tung và song song với trục hoành (\(Ox\))

Bài 8 trang 12 SGK Toán 9 tập 2 hình 2

Ta thấy hai đường thẳng cắt nhau tại \(M(-4; 2)\).

Thay \(x = -4, y = 2\) vào hệ phương trình

\(\left\{ \begin{array}{l}x+3y = 2\\2y = 4\end{array} \right.\) ta được

\(\left\{ \begin{array}{l} - 4 + 3.2 = 2\\2.2 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\4 = 4\end{array} \right.\)

(luôn đúng)

Vậy hệ phương trình có nghiệm \((-4; 2)\).

» Bài tiếp theo: Bài 9 trang 12 SGK Toán 9 tập 2

Trên đây là hướng dẫn cách làm và đáp án bài 8 trang 12 Toán đại số 9 tập 2. Các em cũng có thể tham khảo thêm các bài tập tại chuyên mục giải Toán 9 của doctailieu.com.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM