Lời giải bài 51 trang 127 sgk Toán 8 tập 2 được chia sẻ với mục đích tham khảo cách làm và so sánh đáp án. Cùng với đó góp phần giúp bạn ôn tập lại các kiến thức Toán 8 chương 4 phần hình học để tự tin hoàn thành tốt các bài tập hình lăng trụ đứng và hình chóp đều khác.
Đề bài 51 trang 127 SGK Toán 8 tập 2
Tính diện tích xung quanh, diện tích toàn phần và thể tích của lăng trụ đứng có chiều cao \(h\) và đáy lần lượt là:
a) Hình vuông cạnh \(a\);
b) Tam giác đều cạnh \(a\);
c) Lục giác đều cạnh \(a\);
d) Hình thang cân, đáy lớn là \(2a\), các cạnh còn lại bằng \(a\);
e) Hình thoi có hai đường chéo là \(6a\) và \(8a\).
» Bài tập trước: Bài 50 trang 125 SGK Toán 8 tập 2
Giải bài 51 trang 127 sgk Toán 8 tập 2
Hướng dẫn cách làm
Áp dụng công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của lăng trụ đứng.
Bài giải chi tiết
Dưới đây là các cách giải bài 51 trang 127 SGK Toán 8 tập 2 để các bạn tham khảo và so sánh bài làm của mình:
a)
Kí hiệu lăng trụ đứng đã cho như hình bên.
Diện tích xung quanh là:
\({S_{xq}} = 2p.h = 4.a.{\text{ }}h\)
Diện tích một đáy là :
\({S_đ} = {a^2}\)
Diện tích toàn phần của lăng trụ đứng là :
\({S_{tp}} = {S_{xq}} + 2{S_đ} = 4ah + 2{a^2}\)
Thể tích lăng trụ :
\(V = {S_đ}h = {a^2}.h\)
b)
Chiều cao của tam giác đều là:
\(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\dfrac{a }{ 2}} \right)}^2}} \) \( = \sqrt {\dfrac{{3{a^2}}}{4}} = \dfrac{{a\sqrt 3 }}{2}\)
Diện tích xung quanh là:
\({S_{xq}} = 2p.h = 3a.h\)
Diện tích một đáy là:
\({S_đ} = \dfrac{1}{2}a.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Diện tích toàn phần là:
\({S_{tp}} = {S_{xq}} + 2{S_đ}=3ah +2.\dfrac{{{a^2}\sqrt 3 }}{4}\)\(\, = 3ah + \dfrac{{{a^2}\sqrt 3 }}{2}\)
Thể tích: \(V = {S_đ}.h = \dfrac{{{a^2}\sqrt 3 }}{4}.h = \dfrac{{{a^2}h\sqrt 3 }}{4}\)
c)
Diện tích xung quanh là:
\({S_{xq}}= 2p. h = 6a.h\)
Diện tích tam giác đều cạnh a (theo câu b) là \(\dfrac{{{a^2}\sqrt 3 }}{4}\).
Do đó diện tích một đáy của lăng trụ là :
\({S_đ} = 6.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{3{a^2}\sqrt 3 }}{2}\)
Diện tích toàn phần là: \({S_{tp}} = {S_{xq}} + 2{S_đ}\)
\({S_{tp}} = 6ah + 2.\dfrac{{3{a^2}\sqrt 3 }}{2} = 6ah + 3{a^2}\sqrt 3 \)\(\, = 3a\left( {2h + a\sqrt 3 } \right)\)
Thể tích tích lăng trụ :
\(V = {S_đ}.h = \dfrac{{3{a^2}\sqrt 3 }}{2}.h = \dfrac{{3{a^2}h\sqrt 3 }}{2}\)
d)
Diện tích xung quanh :
\({S_{xq}}= 2ph = (2a + a +a +a). h \)\(\,= 5ah\).
Chiều cao hình thang cũng chính là chiều cao tam giác đều cạnh \(a\).
\(AH = \dfrac{{a\sqrt 3 }}{2}\) (theo câu b)
Diện tích một đáy hình lăng trụ là:
\({S_đ} = \dfrac{{\left( {2a + a} \right).AH}}{2} \)\(\,= \dfrac{{3a}}{2}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{3{a^2}\sqrt 3 }}{4}\)
Diện tích toàn phần là:
\({S_{tp}} = {S_{xq}} + 2{S_đ} = 5ah + 2.\dfrac{{3{a^2}\sqrt 3 }}{4} \)\(\,= 5ah + \dfrac{{3{a^2}\sqrt 3 }}{2}\)
Thể tích hình lăng trụ:
\(V = S.h = \dfrac{{3{a^2}\sqrt 3 }}{4}.h = \dfrac{{3{a^2}h\sqrt 3 }}{4}\)
e)
Cạnh của hình thoi:
\(BC = \sqrt {O{B^2} + O{C^2}} \) \(= \sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}} \) \(= \sqrt {25{a^2}} = 5a\)
Diện tích xung quanh lăng trụ:
\(S_{xq}= 2ph = 4.5a.h = 20ah\)
Diện tích một đáy của lăng trụ:
\({S_đ} = \dfrac{1}{2}.6a.8a = 24{a^2}\)
Diện tích toàn phần:
\({S_{tp}} = {S_{xq}} + 2{S_đ} \)\(\,= 20ah + 2.24a = 20ah + 48{a^2}\)
Thể tích lăng trụ:
\(V = Sh =24{a^2}.h\)
» Bài tập tiếp theo: Bài 52 trang 128 SGK Toán 8 tập 2
Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 51 trang 127 sgk toán 8 tập 2. Mong rằng những bài hướng dẫn giải toán 8 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học này.