Giải bài tập 47 trang 76 sách giáo khoa Toán 7 tập 2 - Hình học

Hướng dẫn giải bài tập và đáp án bài 47 trang 76 SGK Toán 7 tập 2. Tính chất đường trung trực của một đoạn thẳng, phần Hình học.

Đề bài

Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB. Chứng minh ∆AMN  = ∆BMN.

Phương pháp

Áp dụng định lí 1: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

Hướng dẫn giải

Giải bài tập 47 trang 76 sách giáo khoa Toán 7 tập 2 - Hình học
 

Vì M thuộc đường trung trực của AB nên MA = MB.

N thuộc đường trung trực của AB nên NA = NB.

Xét ∆AMN  và ∆BMN ta có:

MA = MB (cmt)

NA = NB (cmt)

MN chung

Vậy ∆AMN  = ∆BMN (c.c.c) (đpcm).

doctailieu.com
Nội dung trên có thể chỉ thể hiện một phần hoặc nhiều phần trích dẫn. Để có đầy đủ, chi tiết và đúng định dạng, bạn vui lòng TẢI VỀ hoặc ĐỌC ONLINE Giải bài tập 47 trang 76 sách giáo khoa Toán 7 tập 2 - Hình học để xem ở dưới đây
Tải về
14/08/2018    15:00 PM
14/08/2018    15:00 PM
Back to top
Fanpage Đọc tài liệu