Bài 46 trang 124 SGK Toán 8 tập 2

Xuất bản: 25/10/2019 - Cập nhật: 14/11/2019 - Tác giả:

Bài 46 trang 124 sgk Toán 8 tập 2 được hướng dẫn chi tiết giúp bạn giải bài 46 trang 124 sách giáo khoa Toán lớp 8 tập 2 đúng và ôn tập các kiến thức đã học.

Lời giải bài 46 trang 124 sgk Toán 8 tập 2 được chia sẻ với mục đích tham khảo cách làm và so sánh đáp án. Cùng với đó góp phần giúp bạn ôn tập lại các kiến thức Toán 8 chương 4 phần hình học để tự tin hoàn thành tốt các bài tập thể tích của hình chóp đều khác.

Đề bài 46 trang 124 SGK Toán 8 tập 2

\(S.MNOPQR\) là một hình chóp lục giác đều (h.132). Bán kính đường tròn ngoại tiếp đáy (đường tròn tâm \(H\), đi qua sáu đỉnh của đáy) \(HM = 12cm\)(h.133), chiều cao \(SH = 35cm\). Hãy tính:

a) Diện tích đáy và thể tích của hình chóp (biết \(\sqrt{108}\approx 10,39\));

b) Độ dài cạnh bên \(SM\) và diện tích toàn phần của hình chóp (biết \(\sqrt{1333}\approx 36,51\) ).

Đề bài 46 trang 124 SGK Toán 8 tập 2 hình ảnh

» Bài tập trước: Bài 45 trang 124 SGK Toán 8 tập 2

Giải bài 46 trang 124 sgk Toán 8 tập 2

Hướng dẫn cách làm

Tính thể tích hình chóp theo công thức:   \(V = \dfrac{1}{3} .S.h\), trong đó \(S\) là diện tích đáy, \(h\) là chiều cao.

Bài giải chi tiết

Dưới đây là các cách giải bài 46 trang 124 SGK Toán 8 tập 2 để các bạn tham khảo và so sánh bài làm của mình:

a) Tam giác \(HMN \) là tam giác đều.
Giải bài 46 trang 124 sgk Toán 8 tập 2

Đường cao của tam giác là:

\(HK = \sqrt{HM^{2}- KM^{2}}\) \( = \sqrt{HM^{2}- {\left( {\dfrac{{MN}}{2}} \right)^2}} \)

\(= \sqrt{12^{2}- 6^{2}} = \sqrt{108}\approx  10,39(cm) \)

Diện tích đáy của hình chóp lục giác đều chính là \(6\) lần diện tích của tam giác đều \(HMN\).

Diện tích đáy của hình chóp là:

\(S_{đ} =6.\dfrac{1}{2}. MN. HK = 6.\dfrac{1}{2}. 12. 10,39 \) \(=374,04(cm^2) \)

Thể tích của hình chóp:

\(V =\dfrac{1}{3}. S_{đ}. SH = \dfrac{1}{3}. 374,04 . 35 \) \(= 4363,8(cm^3) \)

b) Trong tam giác vuông \(SMH\) có:

\(SM= \sqrt{SH^{2}+ MH^{2}} = \sqrt{35^{2}+ 12^{2}}\) \(=\sqrt{1369} = 37 (cm)\)

Đường cao của mỗi mặt bên là :

\(h = SK =\sqrt{SM^{2}- KM^{2}} \)

\(\sqrt{37^{2}- 6^{2}} = \sqrt{1333}\approx 36,51 (cm) \)

Diện tích xung quanh hình chóp là :

\( S_{xq} =  p.d = \dfrac{1}{2}.6. MN. SK \)

\( =\dfrac{1}{2}. 6.12.36,51 = 1314,36 (cm^2)\)

Diện tích toàn phần của hình chóp là:

\(S_{tp} = S_{xq} +S_{đ} = 1314,36 + 374,04 \) \(= 1688,4 (cm^2) \)

» Bài tập tiếp theo: Bài 47 trang 124 SGK Toán 8 tập 2

Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 46 trang 124 sgk toán 8 tập 2. Mong rằng những bài hướng dẫn giải toán 8 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học này.

Bạn còn vấn đề gì băn khoăn?
Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Hủy

TẢI VỀ

CÓ THỂ BẠN QUAN TÂM