Hướng dẫn giải bài 3 trang 126 sách giáo khoa hình học lớp 11

Đáp án bài 3 trang 126 sách giáo khoa hình học lớp 11 thuộc bài tập ôn tập hình học cuối năm

1. Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Gọi M là trung điểm của đoạn AB, E là giao điểm của hai cạnh của hình thang ABCD và G là trọng tâm của tam giác ECD.

(a) Chứng minh rằng bốn điểm S, E, M, G cùng thuộc một mặt phẳng (α) và mặt phẳng này cắt cả hai mặt phẳng (SAC) và (SBD) theo cùng một giao tuyến d.

(b) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBC).

(c) Lấy một điểm K trên đoạn SE và gọi C' = SC ∩KB, D'=SD ∩KA. Chứng minh rằng hai giao điểm của AC' và BD' thuộc đường thẳng d nói trên.

2. Đáp án - hướng dẫn giải bài 3 trang 126

Hình vẽ bài 3 trang 126 sách giáo khoa hình học lớp 11
 

a) Gọi O là giao điểm của AC và DB ; N là giao của EM và DC .

M là trung điểm của AB nên N là trung điểm của DC (vì ABCD là hình thang),

Dễ dàng chứng minh được E,M,N thẳng hàng.

Vậy ba điểm E, G, M thẳng hàng . Mặt phẳng (α) chính là mặt phẳng (SEM)

Ta dễ thấy (SEM) ∩ (SAC) = SO và (SEM) ∩ (SBD) = SO

b) E = AD ∩ BC ⇒ E ∈ AD ⇒ E ∈ (SAD) và E ∈ BC ⇒ E ∈ (SBC)

Vậy E là một điểm chung của hai mặt phẳng (SAD) và (SBC)

S là điểm chung của hai mặt phẳng (SAD) và (SBC)

⇒ (SAD) ∩ (SBC) = SE

c) C′ = SC ∩ KB ⇒ C′ ∈ SC ⇒ C′ ∈ (SAC) ⇒ AC′ ⊂ (SAC)

Tương tự ta có: BD′ ∈ (SDB)

Hai đường thẳng AC′ và BD′ cùng thuộc mặt phẳng (ABK) , giả sử I = AC′ ∩ BD′ và I ∈ AC′ ⇒ M ∈ (SAC) ; I ∈ BD′ ⇒ M ∈ (SDB)

⇒ I là điểm chung của hai mặt phẳng (SAC) và (SDB) hay I ∈ d là giao tuyến của hai mặt phẳng (SAC) và (SBD).

 

doctailieu.com
Nội dung trên có thể chỉ thể hiện một phần hoặc nhiều phần trích dẫn. Để có đầy đủ, chi tiết và đúng định dạng, bạn vui lòng TẢI VỀ hoặc ĐỌC ONLINE Hướng dẫn giải bài 3 trang 126 sách giáo khoa hình học lớp 11 để xem ở dưới đây
Tải về
Back to top
Fanpage Đọc tài liệu