Những nội dung dưới đây không chỉ giúp bạn biết được cách làm, tham khảo đáp án bài 21 trang 19 SGK Toán 9 tập 2 mà còn hỗ trợ bạn ôn tập để nắm vững các kiến thức chương 3 phần đại số Toán 9 đã được học trên lớp về giải hệ phương trình bằng phương pháp cộng đại số.
Đề bài 21 trang 19 SGK Toán 9 tập 2
Giải các hệ phương trình sau bằng phương pháp cộng đại số.
a) \(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\)
» Bài tập trước: Bài 20 trang 19 SGK Toán 9 tập 2
Giải bài 21 trang 19 SGK Toán 9 tập 2
Hướng dẫn cách làm
+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.
+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.
+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho.
Cụ thể:
Cả hệ a) và hệ b) ta đều nhân phương trình thứ nhất với \(-\sqrt 2\), rồi cộng từng vế hai phương trình.
Đáp án chi tiết
Dưới đây là các cách giải bài 21 trang 19 SGK Toán 9 tập 2 để các bạn tham khảo và so sánh bài làm của mình:
a) Nhân cả hai vế của phương trình thứ nhất với \(-\sqrt 2\), rồi cộng từng vế hai phương trình, ta được:
\(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -2x + 3\sqrt{2}.y = -\sqrt{2}& & \\ 2x + \sqrt{2}y = -2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -2x + 3\sqrt{2}.y+2x+ \sqrt{2}.y = -\sqrt{2}-2& & \\ 2x + \sqrt{2}y = -2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 4\sqrt{2}.y = -\sqrt{2} - 2& & \\ 2x + y\sqrt{2} = -2& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-\sqrt{2} - 2}{4\sqrt 2}& & \\ 2x + y\sqrt{2} = -2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x = -y\sqrt{2} -2 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =- \dfrac{-1-\sqrt{2}}{4}.\sqrt{2} -2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =\dfrac{\sqrt 2 -6}{4}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = -\dfrac{3}{4} + \dfrac{\sqrt{2}}{8}& & \\ y = -\dfrac{1}{4} - \dfrac{\sqrt{2}}{4}& & \end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là: \({\left( -\dfrac{3}{4} + \dfrac{\sqrt{2}}{8}; -\dfrac{1}{4} - \dfrac{\sqrt{2}}{4} \right)}\)
b) Nhân hai vế của phương trình thứ nhất với \(\sqrt{2}\), rồi cộng từng vế hai phương trình.
Ta có \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\)
Suy ra
\(\left\{\begin{matrix} 5\sqrt 6 x + y \sqrt 2 = 4 & & \\ x \sqrt 6 - y \sqrt 2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 6 \sqrt 6 x=6 & & \\ x \sqrt 6 -y \sqrt 2 =2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x= \dfrac{\sqrt 6}{6} & &\\ y \sqrt 2 = x \sqrt 6 -2& & \end{matrix} \right. \)
\(\Leftrightarrow \left\{\begin{matrix} x= \dfrac{\sqrt 6}{6} & &\\ y \sqrt 2 = \dfrac{\sqrt 6}{6}. \sqrt 6 -2& & \end{matrix} \right.\)
\( \Leftrightarrow \left\{\begin{matrix} x= \dfrac{\sqrt 6}{6} & &\\ y =- \dfrac{\sqrt 2}{2}& & \end{matrix} \right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là \( {\left(\dfrac{\sqrt 6}{6}; -\dfrac{\sqrt 2}{2} \right)}\)
» Bài tiếp theo: Bài 22 trang 19 SGK Toán 9 tập 2
Trên đây là nội dung hướng dẫn trả lời bài 21 trang 19 SGK Toán 9 tập 2 được Đọc Tài Liệu chia sẻ để giúp bạn hoàn thành tốt bài làm của mình. Mong rằng những tài liệu giải Toán 9 của chúng tôi sẽ luôn là người bạn đồng hành để giúp bạn học tốt hơn môn học này.