Hướng dẫn trả lời câu hỏi và giải bài tập Toán 8 Kết nối tri thức tập 1 giúp học sinh nắm được các cách giải bài tập Chương 1: Đa thức chuẩn bị bài trước khi tới lớp và luyện tập giải toán tại nhà.
Chương 1 Bài 1: Đơn thức
Mở đầu trang 5 Toán 8 Tập 1: Một nhóm thiện nguyện chuẩn bị y phần quà giúp đỡ những gia đình có hoàn cảnh khó khăn. Mỗi phần quà gồm x kg bao gạo và x gói mì ăn liền. Viết biểu thức giá trị bằng tiền (nghìn đồng) của toàn bộ số quà đó, biết 12 nghìn đồng/kg gạo; 4,5 nghìn đồng/gói mì ăn liền.
Hai bạn Tròn và Vuông lập luận như sau:
Bạn Vuông lập luận: Tổng số gạo trong y phần quà trị giá 12xy (nghìn đồng); tổng số gói mì ăn liền trong y phần quà trị giá 4,5xy (nghìn đồng). Vậy biểu thức cần tìm là 12xy + 4,5xy.
Bạn Tròn lập luận: Mỗi phần quà trị giá 12x + 4,5x = 16,5x (nghìn đồng). Do đó, y phần quà trị giá 16,5xy (nghìn đồng). Vậy biểu thức cần tìm là 16,5xy.
Theo em, bạn nào giải đúng?
Lời giải:
Sau bài học này ta giải quyết được bài toán như sau:
Với giá tiền 12 nghìn đồng/kg gạo thì x bao gạo có giá 12x (nghìn đồng);
Với giá tiền 4,5 nghìn đồng/gói mì ăn liền thì x gói mì ăn liền có giá 4,5x (nghìn đồng).
Giá trị của mỗi phần quà là: 12x + 4,5x (nghìn đồng)
Giá trị của y phần quà là: (12x + 4,5x) . y = 12xy + 4,5xy = 16,5xy (nghìn đồng).
Vậy cách giải của hai bạn đều đúng.
1. Đơn thức và đơn thức thu gọn
HĐ1 trang 6 Toán 8 Tập 1: Biểu thức
Lời giải:
Biểu thức
Một số ví dụ về đơn thức một biến:
HĐ2 trang 6 Toán 8 Tập 1: Xét các biểu thức đại số:
Hãy sắp xếp các biểu thức đó thành hai nhóm:
Nhóm 1: Những biểu thức có chứa phép cộng hoặc phép trừ.
Nhóm 2: Các biểu thức còn lại.
Nếu hiểu đơn thức (nhiều biến) tương tự đơn thức một biến thì theo em, nhóm nào trong hai nhóm trên bao gồm những đơn thức?
Lời giải:
Ta sắp xếp các biểu thức đó thành hai nhóm như sau:
Nhóm 1: Những biểu thức có chứa phép cộng hoặc phép trừ.
Nhóm 2: Các biểu thức còn lại.
Nếu hiểu đơn thức (nhiều biến) tương tự đơn thức một biến thì nhóm 2 gồm những đơn thức.
Luyện tập 1 trang 6 Toán 8 Tập 1: Trong các biểu thức sau đây, biểu thức nào là đơn thức?
Lời giải:
Các biểu thức là đơn thức gồm:
Tranh luận trang 6 Toán 8 Tập 1: Bạn Pi đặt câu hỏi: Biểu thức
Bạn Tròn trả lời: Mình nghĩ là đúng, đó là một đơn thức.
Bạn Vuông cho rằng: Mình nghĩ không phải, bởi trong đó có phép cộng.
Còn em nghĩ sao?
Lời giải:
Vì giá trị của
Do đó, biểu thức
Luyện tập 2 trang 8 Toán 8 Tập 1: Thu gọn và xác định bậc của đơn thức
Lời giải:
Thu gọn đơn thức, ta được:
Đơn thức
2. Đơn thức đồng dạng
HĐ3 trang 8 Toán 8 Tập 1: Cho đơn thức một biến
Lời giải:
Ta có thể viết được nhiều đơn thức biến x, cùng bậc với đơn thức 3x2.
Chẳng hạn:
So sánh phần biến của các đơn thức trên, ta được:
HĐ4 trang 8 Toán 8 Tập 1: Xét ba đơn thức
a) Bậc của ba đơn thức A, B và C;
b) Phần biến của ba đơn thức A, B và C.
Lời giải:
a) Ba đơn thức A, B và C đều có bậc là 5.
Do đó bậc của ba đơn thức A, B và C bằng nhau.
b) Hai đơn thức A và B đều có phần biến là
Luyện tập 3 trang 8 Toán 8 Tập 1: Cho đơn thức:
Hãy sắp xếp các đơn thức đã cho thành từng nhóm, sao cho tất cả các đơn thức đồng dạng thì thuộc cùng một nhóm.
Lời giải:
Sắp xếp các đơn thức đã cho thành từng nhóm, ta được:
• Nhóm 1:
• Nhóm 2:
• Nhóm 3:
Tranh luận trang 8 Toán 8 Tập 1: Ta đã biết nếu hai đơn thức một biến có cùng biến và có cùng bậc thì đồng dạng với nhau. Hỏi điều đó còn đúng không đối với hai đơn thức hai biến (nhiều hơn một biến)?
Lời giải:
Hai đơn thức một biến có cùng biến và có cùng bậc thì đồng dạng với nhau. Điều này cũng đúng với hai đơn thức hai biến (nhiều hơn một biến).
HĐ5 trang 8 Toán 8 Tập 1: Quan sát các ví dụ sau:
Trong ví dụ này, ta đã vận dụng tính chất gì của phép nhân để thu gọn tổng ban đầu?
Lời giải:
Trong ví dụ này, ta đã vận dụng tính chất phân phối của phép nhân đối với phép cộng để thu gọn tổng ban đầu.
HĐ6 trang 8 Toán 8 Tập 1: Cho hai đơn thức đồng dạng
a) Thu gọn tổng M + P;
b) Thu gọn hiệu M – P.
Lời giải:
a) Ta có
b) Ta có
Luyện tập 4 trang 9 Toán 8 Tập 1: Cho các đơn thức
a) Tính tổng S của ba đơn thức đó.
b) Tính giá trị của tổng S tại x = 2; y = –3.
Lời giải:
a) Ta có
b) Thay x = 2; y = –3 vào biểu thức S, ta được:
23 . (–3) = 8 . (–3) = –24.
Vậy S = –24 tại x = 2; y = –3.
Vận dụng trang 9 Toán 8 Tập 1: Trở lại các lập luận của Tròn và Vuông trong tình huống mở đầu. Hãy trả lời và giải thích rõ tại sao.
Lời giải:
Với giá tiền 12 nghìn đồng/kg gạo thì x bao gạo có giá 12x (nghìn đồng);
Với giá tiền 4,5 nghìn đồng/gói mì ăn liền thì x gói mì ăn liền có giá 4,5x (nghìn đồng).
Giá trị của mỗi phần quà là: 12x + 4,5x (nghìn đồng)
Giá trị của y phần quà là: (12x + 4,5x) . y = 12xy + 4,5xy = 16,5xy (nghìn đồng).
Vậy cách giải của hai bạn đều đúng.
Bài tập
Bài 1.1 trang 9 Toán 8 Tập 1: Trong các biểu thức sau, biểu thức nào là đơn thức?
Lời giải:
Các biểu thức là đơn thức gồm
Bài 1.2 trang 9 Toán 8 Tập 1: Cho các đơn thức:
a) Liệt kê các đơn thức thu gọn trong các đơn thức đã cho và thu gọn các đơn thức còn lại.
b) Với mỗi đơn thức nhận được, hãy cho biết hệ số, phần biến và bậc của nó.
Lời giải:
a) Các đơn thức B và D là đơn thức đã thu gọn.
Ta thu gọn đơn thức A và C như sau:
b) Đơn thức A = −8x^3y có hệ số là −8; phần biến là x^3y và bậc là 4;
Đơn thức B = 12,75xyz có hệ số là 12,75; phần biến là xyz và bậc là 3;
Đơn thức
Đơn thức
Bài 1.3 trang 10 Toán 8 Tập 1: Thu gọn rồi tính giá trị của mỗi đơn thức sau:
a)
b)
Lời giải:
a) Ta có
Thay
b) Ta có
Thay x = ; y = 0,5; z = 2 vào biểu thức B, ta được:
Bài 1.4 trang 10 Toán 8 Tập 1: Sắp xếp các đơn thức sau thành từng nhóm, mỗi nhóm chứa tất cả các đơn thức đồng dạng với nhau:
Lời giải:
Sắp xếp các đơn thức sau thành từng nhóm các đơn thức đồng dạng như sau:
Nhóm 1:
Nhóm 2:
Nhóm 3:
Bài 1.5 trang 10 Toán 8 Tập 1: Rút gọn rồi tính giá trị biểu thức:
Lời giải:
Ta có
Thay x = −2 và y = 1 vào biểu thức S, ta được:
Bài 1.6 trang 10 Toán 8 Tập 1: Tính tổng của bốn đơn thức:
Lời giải:
Tổng của bốn đơn thức đã cho là:
Bài 1.7 trang 10 Toán 8 Tập 1: Một mảnh đất có dạng như phần được tô màu xanh trong hình bên cùng với các kích thước được ghi trên đó. Hãy tìm đơn thức (thu gọn) với hai biến x và y biểu thị diện tích của mảnh đất đã cho bằng hai cách:
Cách 1. Tính tổng diện tích của hai hình chữ nhật ABCD và EFGC.
Cách 2. Lấy diện tích của hình chữ nhật HFGD trừ đi diện tích của hình chữ nhật HEBA.
Lời giải:
Cách 1.Tính tổng diện tích của hai hình chữ nhật ABCD và EFGC.
Diện tích hình chữ nhật ABCD là: 2x . 2y = 4xy (đvdt);
Diện tích hình chữ nhật EFGC là: 3x . y = 3xy (đvdt);
Diện tích mảnh đất tô màu xanh là: 4xy + 3xy = 7xy (đvdt).
Cách 2. Lấy diện tích của hình chữ nhật HFGD trừ đi diện tích của hình chữ nhật HEBA.
Diện tích hình chữ nhật HFGD là: 3x(2y + y) = 3x . 3y = 9xy (đvdt);
Diện tích hình chữ nhật HEBA là: (3x – 2x) . 2y = x . 2y = 2xy (đvdt);
Diện tích mảnh đất tô màu xanh là: 9xy – 2xy = 7xy (đvdt).
-//-
Hy vọng với nội dung trả lời chi tiết câu hỏi trong Bài 1: Đơn thức giúp học sinh nắm được nội dung bài học và ghi nhớ những nội dung chính, quan trọng trong chương trình học Toán học 8.